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ABSTRACT

The study of human metaphase chromosomes is an important

aspect in clinical diagnosis of genetic disorders. Although

many image processing techniques have been developed for

chromosomal karyotyping to assist in laboratory diagnosis,

they fail to provide reliable results in segmenting and extract-

ing the centerline of chromosomes due to their shape variabil-

ity when placed on microscope slides. In this paper we pro-

pose a hybrid algorithm that uses Gradient Vector Flow active

contours, Discrete Curve Evolution based skeleton pruning

and morphological thinning to provide a reliable centerline

that is robust to shape variations of the chromosomes. Effec-

tive identification of the chromosome outline with its center-

line provides a basis for further operations such as automated

chromosome classification and centromere identification.

Index Terms— Chromosome segmentation, gradient

vector flow, discrete curve evolution, medial axis

1. INTRODUCTION

Early detection of genetic disorders using human metaphase

chromosomes is a critical stage in clinical diagnosis. Kary-

otype analysis is one of the main research areas in image

processing. It aims at producing annotated karyograms with

the least user involvement and therefore effectively reducing

the diagnosis time period. Methods available for karyotyp-

ing or other chromosome analysis are mainly limited by the

shape variability caused by non-rigid nature of the chromo-

some structure. Therefore, the effectiveness of these image

processing techniques are highly limited by the inability to

provide proper results irrespective of the shape of the chro-

mosome [1]. Proper segmentation and extraction of the center

line of the chromosome plays a vital role in many of the avail-

able karyotyping methods [2]. In this research, the image pro-

cessing techniques were applied to DAPI (4’,6-Diamidino-

2-Phenylindole) stained chromosomes in contrast to Geimsa

banded chromosomes used in many karyotype analysis meth-

ods in literature. The image processing techniques discussed

in this paper are a part of an algorithm developed to accurately

locate FISH (Fluorescent in situ hybridization) probes rela-

tive to landmarks on DAPI stained metaphase chromosomes.

FISH uses fluorescence DNA probes to detect chromosome

sequence rearrangements in genetic diseases.

The commonly used segmentation method is global or lo-

cal thresholding [3]. Thresholding often yields acceptable re-

sults since the intensity histograms of chromosome images

are typically bi-modal with a good separation of the peaks.

However, the presence of noise and other artifacts in fluores-

cence microscopy can cause inaccurate segmentation due to

thresholding being a point process.

Parametric deformable models are another widely tested

segmentation method. The gradient vector flow (GVF) based

active contours deliver better results in chromosome image

segmentation [4]. GVF was first introduced into parametric

active contours(referred to as snakes), to address a main limi-

tation in the traditional active contour model [5] by improving

its capture range drastically.

The centerline is a shape descriptor based on the topo-

logical skeleton of the object, which produces a longitudi-

nal axis of symmetry. Medial Axis Transformation (MAT)

is commonly used in order to achieve this. In practice, us-

ing MAT or other morphological operations such as object

thinning tend to produce poor results due to the shape vari-

ability of chromosomes. Such variations often yield spuri-

ous branches during the skeletonization process. Numerous

other approaches have been proposed, but most of these avoid

using skeletonization or thinning while preventing unwanted

branching [1],[2]. Those methods also suffer from the unpre-

dictable shape variations of the chromosome preparations.

In this paper, we propose an algortihm based on GVF

snakes, discrete curve evolution (DCE) based pruning and

morphological thinning that can effectively yield accurate

segmentation as well as centerline extraction which is inde-

pendent of the chromosome shape. Additionally, the cen-

terline extraction is designed to be robust against object

boundary noise present in fluorescence microscope images.

The proposed algorithm is explained in detail in section 2

and its results on actual chromosome images are analyzed in

section 3. Concluding remarks are given in section 4.
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2. THE PROPOSED ALGORITHM

2.1. Pre-Processing and Segmentation

The initial processing stages prior to the secondary segmen-

tation are listed below,

• Step1: The fluorescent chromosomal images were first

normalized and then subjected to a global thresholding

process based on Otsu’s method [6]. This threshold-

ing algorithm attempts to segment the histogram of the

image into two clusters by minimizing their intra-class

variance.

• Step2: The contour of the above segmentation result

was extracted by removing all 4-connected pixels of the

binary image thus leaving only the boundary pixels in-

tact.

• Step3: The inverted DAPI chromosome image was fur-

ther subjected to a 2D median filtering stage to remove

any noise and artifacts present in the image while pre-

serving information regarding the chromosome bound-

aries.

The rationale for adopting a parametric active contour

model was due to the availability of a close approximation

of the chromosome shape through thresholding and the pres-

ence of strong edges around the chromosomes. Yet, due to

unequal illumination across the fields of view, these initial

object shapes can be either under-approximated or over-

approximated. Therefore, the snake model in question had

to be able to either expand or contract into the chromosome

object depending on the initial contour positioning. Also, due

to the shape variability of chromosomes, we required a snake

model that could converge into concave boundaries.

GVF based snakes [5] successfully address all of the

above issues and have a significantly higher convergence and

capture range compared to the traditional snake model. GVF

snakes also have the ability to shrink or expand depending on

the gradient vector field which is a diffused field based on the

edge map of the image. Unlike Gaussian smoothing which

is commonly used to increase the capture range, the use of

GVF doesn’t blur the edge map and thus leads to more accu-

rate boundary positioning at convergence. GVF based snakes

have been used in many segmentation algorithms including

human chromosome segmentation [4] and yield satisfactory

results compared to other segmentation methods. Therefore,

the contour extracted from the reduced binary image was

parameterized and those control points were allowed to move

into the object boundaries by iterating until convergence.

2.2. Finding the Centerline

The chromosome centerline is necessary in many operations

like classification performed on segmented chromosomes

[1],[7]. Many shape and structure-related features such as

the chromosomal banding pattern, width and density profiles

can be extracted using the centerline. Small deviations in

the extraction of these authentic features could result in clas-

sification errors [2]. The majority of centerline extracting

methods reported in the literature are based on MAT (Medial

Axis Transform) and different thinning methodologies [8].

Skeletonization or thinning produces spurious branches fre-

quently at bend locations particularly towards the telomere

regions of the chromosomes. The methods that are not based

on MAT mainly have problems with handling objects with

sharp bends which are commonly present in metaphase chro-

mosomes [1],[2].

We have adopted a skeleton pruning method based on

Discrete Curve Evolution (DCE) [9] which in our algorithm

was applied only to chromosomes with skeletons longer than

a particular length (35 skeletal points) and shorter chromo-

somes were processed using the thinning algorithm described

by Lam [10]. The rationale behind this hybrid application is

to use DCE based pruning only on chromosomes which are

highly likely to be bent while utilizing thinning on relatively

shorter chromosomes for which the skeleton deviates from the

centerline. The DCE based skeleton pruning process is based

on partitioning the object contour into polygonal sections and

then evolving them according to DCE. Furthermore, pruning

is achieved by removing all skeletal points of which all the

generating points (the points where the maximal disks touch

the object boundary) lie on the same polygon partition. Re-

sults in this skeletal pruning method tend to be highly depen-

dent on the contour partitioning itself. Therefore the skele-

ton pruning problem can be viewed as a contour partitioning

problem. DCE provides an ideal solution for this by effec-

tively evolving polygon partitions by vertex deletion based

on any given relevance measurement[11]. For the implemen-

tation, any digital image boundary can be approximated to a

polygon without a loss of information by taking each bound-

ary pixel as a vertex on the polygon and similarly considering

the distance between each pixel as an edge. DCE was used to

evolve the polygon iteratively by removing the vertex which

had the least value for the relevance value K(v, u, w) defined

in equation 1, where duv & dvw are the Euclidian length be-

tween the vertices and θ is the turn angle at vertex v. This

relevance function was selected so that it is dependent on fea-

tures of its neighbors and thus makes DCE able to evolve us-

ing global features of the shape information.

K(v, u, w) = (θ ∗ duv ∗ dvw)/(duv + dvw) (1)

Also, as DCE is simply deleting vertices of the polygon

partitions, the topology information is guaranteed to be rep-

resented at the skeleton ends. Furthermore we have consid-

ered only the convex polygon combinations in order to prune

spurious branches effectively [9],[12]. Figure 1 depicts the

reliability and accuracy of the DCE based pruning method
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compared to standard pruning. Figure 1(b) and figure 1(c)

depict two DCE based pruning results for different number of

vertices for the end convex polygon.

(a)Skeleton (b)DCE triangle (c)DCE pentagon

Fig. 1. Comparison between standard skeleton with DCE

based solutions on a bent chromosome.

In the case of obtaining the medial axis of a chromosome,

the ideal result would be a pruned skeleton with no extra

branches. Yet, as the minimum convex polygon being a trian-

gle and DCE being modeled as polygons, the resulting skele-

ton will at minimum have one spurious branch. This issue

was resolved by tracing all branches and pruning the shortest

branch completely. The DCE result was then processed by a

modified thinning algorithm to ensure single pixel thickness

of the skeleton. Our modified thinning algorithm consisted of

the application of a set of masks to the skeleton on the ba-

sis of the morphological hit & miss algorithm followed by

a thinning process described by Lam [10]. A curve fitting

step was then introduced to obtain a smooth curve from the

skeleton of the previous step. This step was based on cubic

spline interpolation which attempts to fit a 3rd order polyno-

mial between each of its control points (knots) while keeping

continuity at its end point connections. Therefore cubic spline

interpolation is an appropriate method for approximating the

centerline of any bent metaphase chromosome. The control

points for curve fitting were provided by sampling the skele-

ton result obtained through DCE pruning step and registering

a control point for approximately every 7 skeleton points af-

ter excluding some portion of each end. The interval of ’7’

points above was selected empirically in order to avoid over

fitting the data while representing the shape information ad-

equately. The end section clipping was performed to remove

the skeletal portion that deviated at the telomere regions from

the actual centerline.

Finally, a methodology was developed to correct the end

points of the centerline using a heuristic gradient based end

point detection method. This was achieved by creating a tem-

plate which matched telomere regions of a chromosome (see

table 1). The line segments used in this were extended seg-

ments of the end points of the sampling points used for spline

curve fitting stage. The lengths of these segments were se-

lected to be 20% of the centerline.

0 0 0 0 0 0 0

0 0 - - - 0 0

0 0 - - - 0 0

0 - - + - - 0

0 - + + + - 0

- + + 0 + + -

0 + 0 0 0 + 0

Table 1. A 7x7 represention of the original 20x20 template

used for end point correction, where the coefficients were set

as ’0’ - ignored, ’+’ as +1 and ’-’ as -1.

3. RESULTS AND DISCUSSION

The proposed algorithm was tested on 120 chromosomes

extracted from 15 inverted DAPI stained lymphocyte cell

images captured using an epifluorescence microscope. The

chromosomes selected for the DCE based methodology did

not overlap or touch each other and they met the minimum

length criteria of 35 points (see section 2.2). The centerline

extracted using our algorithm was compared with that ob-

tained through a thinning approach [10]. Centerlines drawn

by a geneticist were used as the gold standard. Two metrics

(MAD - ’mean absolute distance’ & MAXD - ’maximum

absolute distance’) were used to measure error from this gold

standard and the results are shown in Table 2. These results

show that in general, the DCE based method performs better

than thinning in nearly all chromosome groups. Results using

DCE were independent of the source of the chromosomal ma-

terial, i.e. of the patient, slide or cell that was selected. The

accuracy of the DCE based method was particularly high in

regions of chromosome bends, which occur more frequently

in longer chromosomes. Longer chromosomes are well repre-

sented in groups A,B & C in table 2, where the improvements

of the DCE based method were apparent. In addition, longer

chromosomes are found in pro metaphase chromosomes that

are just beginning to condense in mitosis. Another category

of relatively longer chromosomes can include chromosome

rearrangements such as duplications or translocations.

The centerline derived from this algorithm was particu-

larly sensitive to the parameters used for GVF segmentation

and selection of sampling points during spline fitting. Firstly,

the segmentation outcome was observed to be highly sensitive

to the values set for the main internal parameters of the GVF

snake such as α (elasticity factor), β (rigidity factor), μ (GVF

regularization factor) and κ (external force weight). A sensi-

ble set of values for the above factors (α = 0.05, β = 0, κ =
2, μ = 0.2) provided satisfactory results in our experiments

but fine tuning was possible through adjustment. Next, the se-

lection of the sample point spacing and the starting and end-

ing sample point offset (from the DCE result) were observed

as critical parameters in the medial axis extraction and values

were set based on empirical observations.
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Table 2. Matric results (MAD and MAXD) mean values and

standard deviation for each chromosome group. The num-

ber after each chromosome group name specifies the number

of chromosomes present in the data set from that particular

group.
Chrom. Proposed method Thinning method
group MAD MAXD MAD MAXD
A-21 0.59±0.30 1.68±0.89 0.67±0.31 1.90±1.10

B-22 0.66±0.22 1.69±0.52 0.72±0.30 1.98±0.89

C-55 0.62±0.24 1.86±1.17 0.73±0.28 2.11±1.26

D-11 0.68±0.26 1.52±0.51 0.79±0.37 1.86±0.95

E-09 0.73±0.48 1.73±0.62 0.89±0.56 1.95±1.49

F-01 0.30 1.41 0.49 1.41

G-01 0.62 1.41 0.58 1.41

(a) (b) (c)

Fig. 2. Centerline results of representative bent chromosomes

using the proposed algorithm.

The algorithm was also able to successfully handle bent

chromosomes (as seen in Fig 2) and extract the centerline that

closely represents the shape information of the chromosome.

The sharpness of the centerlines in Fig 2 is mainly due to the

pixelation effect of the magnified image.

4. CONCLUSION & FUTURE WORK

An algorithm based on GVF active contours, DCE based

skeleton pruning and morphological thinning is presented in

this paper. The accuracy of the centerline is important as con-

sequences of errors in measuring chromosome lengths could

result in inaccurate structural assignments.This algorithm is

observed to be robust against image boundary noise as well

as the high variability of the chromosome shapes. The pro-

posed algorithm can be utilized as a part of operations such

as centromere detection, chromosome classification, DNA

probe localization etc.

Future work includes a suitable method for splitting over-

lapping chromosomes along with more improvements for the

end point correction method to make this algorithm applica-

ble to any metaphase chromosome. Potential applications of

this algorithm can extend to non-cytogenetic fields as well.

For an example, this can be used in geographical locations of

topological contours to determine optimal paths between two

physical objects at the same altitude.
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