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Abstract

With the increasing use of Fluorescence In Situ Hy-
bridization (FISH) probes as markers for certain genetic
sequences, the requirement of a proper image processing
framework is becoming a necessity to accurately detect
these probe signal locations in relation to the centerline of
the chromosome. Although many image processing tech-
niques have been developed for chromosomal analysis, they
fail to provide reliable results in segmenting and extracting
the centerline of chromosomes due to the high variability in
shape of chromosomes on microscope slides. In this paper
we propose a hybrid algorithm that utilizes Gradient Vec-
tor Flow active contours, Discrete Curve Evolution based
skeleton pruning and morphological thinning to provide a
robust and accurate centerline of the chromosome, which is
then used for the measurement of the FISH probe signals.
The ability to accurately detect FISH probe locations with
respective to the centerline and other landmarks can pro-
vide the cytogeneticists with detailed information that could
lead to a faster diagnosis.

1. Introduction

Many chronic diseases can be traced back to the DNA
structure of a patient. Therefore the study of human chro-
mosomes and their structure becomes of utmost importance
in clinical diagnosis. Non radioactive Fluorescence In Situ
Hybridization (FISH) has been used to assist this diagno-
sis process by providing the cytogeneticist with informa-
tion regarding the present location of a known DNA se-
quence in a selected chromosome, which could be used to
detect certain chromosomal abnormalities [18]. FISH uses
fluorescence DNA probes to detect chromosome sequence
rearrangements in genetic diseases. Karyotype analysis is
one of the main research areas in image processing which

aims at producing annotated karyograms with the least user
involvement. Methods available for karyotyping or other
chromosome analysis are mainly limited by the shape vari-
ability caused by non-rigid nature of the chromosome struc-
ture. Therefore, the effectiveness of these image process-
ing techniques are highly limited by the inability to pro-
vide proper results irrespective of the shape of the chro-
mosome [19]. Proper segmentation and extraction of the
center line of the chromosome plays a vital role in many
of the available karyotype analysis methods [8],[21]. In
this research, the image processing techniques are applied
to DAPI (4’,6-Diamidino-2-Phenylindole) stained chromo-
some images in contrast to Geimsa stained images used in
many karyotype analysis methods in literature.

Karyotype analysis is used in this paper merely for com-
parison of methodologies used for information extraction
and our algorithm can be readily adopted in to any type of
analysis which needs similar information. In this research,
we have identified the following features as the most impor-
tant landmarks for FISH probe projection [5],[20],[21],

• A proper segmentation of the chromosome.

• An accurate centerline extraction.

• Telomere coordinates and the centromere location.

In general, segmentation methodologies applied to chro-
mosome images vary from very simple to highly complex in
computational aspects. The common method used is global
or local thresholding [4],[5],[24]. This simple method gives
good results in chromosome images due to the fact that
the images only have 2 modes (object/background) and bi-
narization usually yields distinct chromosome boundaries.
Yet, thresholding tends to be sensitive to noise and im-
age in homogeneities as spatial information is not consid-
ered in the decision making process. Another segmentation
method found in literature is parametric deformable mod-
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els. Among these, Gradient Vector Flow (GVF) based ac-
tive contours have been proven to deliver better results, es-
pecially in chromosome image segmentation [2],[13]. First
introduced into active contours in 1997, GVF snakes ad-
dressed a main limitation in the traditional active con-
tours [25] by drastically improving its capture range.

Medial Axis Transform (MAT) and morphological thin-
ning are the most commonly adopted methods in find-
ing the centerline of chromosomes, but they suffer from
many inherent limitations. MAT provides a set of points
in space, rather than a parametric curve that can be effec-
tively and easily used for further calculations. Several at-
tempts have been made in order to find suitable methods
without using skeletonization or thinning. Jim Piper and Er-
ick Granum [19] proposed a two stage approach to find the
centerline in which they first determined the orientation of
the chromosome by calculating the minimum width enclos-
ing rectangle. Then, if the chromosome is not highly bent,
it was rotated such that the orientation is vertical and mid
points of the horizontal chromosome slices were connected
together to obtain the centerline which was then smoothed
to get the ”poor man’s skeleton”. But, if the chromosome
is bent, they performed a conventional skeletonization algo-
rithm. Yet, the problem with this approach is the spurious
branches that occurred with the conventional skeletoniza-
tion process. In another approach [8], chromosomes were
sampled into scan lines of different inclinations and after se-
lecting proper cross-sections, the selected mid points were
combined to obtain an approximate centerline. The draw-
back of this method is that it attempted at getting a polygo-
nal approximation of the centerline instead of the centerline
itself. Results were poor when the segmented chromosome
boundaries were irregular in shape, which is a common oc-
currence in medial imaging. Gunter Ritter [21] proposed a
method which was based on finding the dominant points of
the chromosome. But, results were not reliable when it was
applied to highly bent and blurred chromosomes.

Apart from the methods mentioned above, the majority
of chromosome centerline findings are carried out with the
following two steps,

1. Iterative morphological thinning or skeletonization
process which reduces the 2D binary image to a col-
lection of points representing the original shape infor-
mation of the object.

2. A Pruning process which is used to remove all the spu-
rious branches present in the skeleton obtained above.

There have been many approaches in the field of
karyotyping, where the centromere location informa-
tion was used to classify chromosomes into different
classes [15],[16],[22]. Some of the centromere detecting
work was based on methods that did not involve finding

the centerline of the chromosome. Mousavi [23] assigned
a membership value for each pixel of DAPI and FITC im-
ages (with centromere probes) based on an iterative fuzzy
algorithm. Another work carried out by Moradi [16] and
similarly by Faria [3] (on fish chromosomes) attempted to
find the centromere location by getting the horizontal and
vertical projection vectors of the binary segmented chro-
mosomes. Most of these methods did not perform well on
acrocentric chromosomes as well as on chromosomes with
a bend greater than 900 degrees. Majority of work carried
out on centromere location is based on getting the centerline
of the chromosome first. Piper’s [19] approach towards this
was to achieve the second moment of the profile of the chro-
mosome along its centerline. Moradi [15] took the average
of image intensities along scan lines perpendicular to the
centerline and used wavelet de-noising to remove sharp per-
turbation in the density profile (DP). Wang [22] extracted
the shape profile, density profile and the banding patterns
using scan line sampling and then used a rule based setup to
detect the chromosome centromere.

The proposed hybrid algorithm which is based on GVF
snakes, DCE based pruning and morphological thinning is
explained in detail in the next section 2.

2. Proposed algorithm

At the outset, the fluorescence microscopy images ob-
tained from a single specimen were subjected to a rank-
ing algorithm[10]. This algorithm provided a ranked set
of metaphase images in which chromosome images that are
spread well and are complete were ranked higher. The rest
of the proposed algorithm deals with the set of images with
the best rank so that the accuracy of the overall process is
improved.

2.1. Pre processing and segmentation

The initial processing stages prior to the secondary seg-
mentation are listed below,

• Step1: The fluorescent chromosomal images were first
normalized and then subjected to global thresholding
based on Otsu’s method [17]. This thresholding algo-
rithm attempts to segment the histogram of the image
into two clusters by minimizing intra-class variance.

• Step2: The contour (boundary pixels) of the above
segmentation result was extracted by removing all 4-
connected pixels of the binary image.

• Step3: The inverted DAPI chromosome image was fur-
ther subjected to a 2D median filtering stage to remove
any noise and artifacts present in the image while pre-
serving chromosome boundary information.
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The rationale for adopting a parametric active contour
model was due to the availability of a close approxima-
tion of the chromosome shape through thresholding and the
presence of strong edges around the chromosomes. Yet, due
to unequal illumination across the fields of view, these ini-
tial object shapes can be either under-approximated or over-
approximated. Therefore, the snake model in question had
to be able to either expand or contract into the chromosome
object depending on the initial contour positioning. Also,
due to the shape variability of chromosomes, we required a
snake model that could converge into concave boundaries.

GVF based snakes [25] successfully address all of the
above issues and have a significantly higher convergence
and capture range compared to the traditional snake model.
GVF snakes also have the ability to shrink or expand de-
pending on the gradient vector field which is a diffused
field based on the edge map of the image. Unlike Gaussian
smoothing which is commonly used to increase the cap-
ture range, the use of GVF doesn’t blur the edge map and
thus leads to more accurate boundary positioning at con-
vergence. GVF based snakes have been used in many seg-
mentation algorithms including human chromosome seg-
mentation [2],[13] and yield satisfactory results compared
to other segmentation methods. Therefore, the contour ex-
tracted from the reduced binary image was parameterized
and those control points were allowed to move into the ob-
ject boundaries by iterating until convergence.

2.2. Finding the centerline

The chromosome centerline is necessary in many oper-
ations like classification performed on segmented chromo-
somes [19],[20]. Many shape and structure-related features
such as the chromosomal banding pattern, width and den-
sity profiles can be extracted using the centerline. Small de-
viations in the extraction of these authentic features could
result in classification errors [8]. The majority of center-
line extracting methods reported in the literature are based
on MAT (Medial Axis Transform) and different thinning
methodologies [15]. Skeletonization or thinning produces
spurious branches frequently at bend locations in partic-
ularly towards the telomere regions of the chromosomes.
The methods that are not based on MAT mainly have prob-
lems with handling objects with sharp bends which are com-
monly present in metaphase chromosomes [8],[19].

We have adopted a skeleton pruning method based on
Discrete Curve Evolution (DCE) [1] which in our algorithm
was applied only to chromosomes with skeletons longer
than a particular length (35 skeletal points) and shorter chro-
mosomes were processed using the thinning algorithm de-
scribed by Lam [11]. The rationale behind this hybrid appli-
cation is to use DCE based pruning only on chromosomes
which are highly likely to be bent while utilizing thinning

on relatively shorter chromosomes for which the skeleton
deviates from the centerline. The DCE based skeleton prun-
ing process is based on partitioning the object contour into
polygonal sections and then evolving them according to
DCE. Furthermore, pruning is achieved by removing all
skeletal points of which all the generating points (the points
where the maximal disks touch the object boundary) lie on
the same polygon partition. Results in this skeletal pruning
method tend to be highly dependent on the contour parti-
tioning itself. Therefore the skeleton pruning problem can
be viewed as a contour partitioning problem. DCE provides
an ideal solution for this by effectively evolving polygon
partitions by vertex deletion based on any given relevance
measurement [12]. For the implementation, any digital im-
age boundary can be approximated to a polygon without a
loss of information by taking each boundary pixel as a ver-
tex on the polygon and similarly considering the distance
between each pixel as an edge. DCE was used to evolve
the polygon iteratively by removing the vertex which has
the least value for the relevance value K(v, u, w) defined in
equation 1, where duv & dvw are the Euclidian length be-
tween the vertices and θ is the turn angle at vertex v. This
relevance function was selected so that it is dependent on
features of its neighbors and thus makes DCE able to evolve
using global features of the shape information.

K(v, u, w) = (θ ∗ duv ∗ dvw)/(duv + dvw) (1)

Also, as DCE is simply deleting vertices of the polygon
partitions, the topology information is guaranteed to be rep-
resented at the skeleton ends. Furthermore we have con-
sidered only the convex polygon combinations in order to
prune spurious branches effectively [1],[12]. Figure 1 de-
picts the reliability and accuracy of the DCE based pruning
method compared to standard pruning. Figure 1(b) and fig-
ure 1(c) depict two DCE based pruning results for different
number of vertices for the end convex polygon

In the case of obtaining the medial axis of a chromo-
some, the ideal result would be a pruned skeleton with no
extra branches. Yet, as the minimum convex polygon be-
ing a triangle and DCE being modeled as polygons, the re-
sulting skeleton will at minimum have one spurious branch.
This issue was resolved by tracing all branches and prun-
ing the shortest branch completely. The DCE result was
then processed by a modified thinning algorithm to ensure
single pixel thickness of the skeleton. Our modified thin-
ning algorithm consisted of the application of a set of masks
to the skeleton on the basis of the morphological hit &
miss algorithm followed by a thinning process described by
Lam [11]. A curve fitting step was then introduced to ob-
tain a smooth curve from the skeleton of the previous step.
This step was based on cubic spline interpolation which at-
tempts to fit a 3rd order polynomial between each of its
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(a) Original Image (b) Skeleton

(c) DCE triangle (d) DCE pentagon

Figure 1. Comparison between standard
skeleton with DCE based solutions.

control points (knots) while keeping continuity at its end
point connections. Therefore cubic spline interpolation is
an appropriate method for approximating the centerline of
any bent metaphase chromosome. The control points for
curve fitting were provided by sampling the skeleton re-
sult obtained through DCE pruning step and registering a
control point for approximately every 7 skeleton points af-
ter excluding some portion of each end. The interval of
’7’ points above was selected empirically in order to avoid
over fitting the data while representing the shape informa-
tion adequately. The end section clipping was performed
to remove the skeletal portion that deviates at the telomere
regions from the actual centerline.

Table 1. A 7x7 representation of the original
20x20 template used for end point correction,
where the coefficients were set as ’0’ as ig-
nored, ’+’ as +1 and ’-’ as -1.

0 0 0 0 0 0 0
0 0 - - - 0 0
0 0 - - - 0 0
0 - - + - - 0
0 - + + + - 0
- + + 0 + + -
0 + 0 0 0 + 0

Finally, a methodology was developed to correct the end
points of the centerline using a heuristic gradient based end
point detection method. This was achieved by creating
a template which matches telomere regions of a chromo-
some (see table 1). The line segments used in this were

extended segments of the end points of the sampling points
used for spline curve fitting stage. The lengths of these seg-
ments were selected to be 20% of the centerline.

2.3. Centromere identification

The centromere is the most condensed and constricted
region of a chromosome to which the spindle fiber is at-
tached during mitosis (cell division) [9]. The detection of
centromere is an important stage in almost all karyotype
classification methods as the centromere index value is a
key feature which can be used to relate a given chromosome
to its group. The centromere index is the ratio between the
short arm to the total length of a chromosome, which corre-
sponds to the location of the centromere.

All the earlier mentioned approaches in detecting the
centromere are mainly limited by the lack of knowledge
of the information relevant to chromosomes as these are
merely a section of a karyotype analysis problem. Our ap-
plication differed from karyotype analysis as the system was
meant to analyze a known chromosome at any given in-
stance. Therefore, the centromere identification process can
be adapted to include that information to assist the detection
process. For an example, the information whether a given
chromosome is acrocentric or not would help a great deal
for the program to find the centromere. In our approach, the
centerline prior to the stage of end point correction was used
for this purpose and line segments were sampled perpendic-
ular to that of the centerline segment at unit length intervals.
The sampling of the intensities along these perpendicular
line segment(referred to as ’trellis’ in subsequent sections),
was weighted based on a Gaussian function. This was in-
tended to cancel image and boundary noises as well as ef-
fects introduced by bending of the chromosomes. Though
the sampling of intensities along the trellis was performed
on the filtered DAPI image, the length of the trellis seg-
ments were decided from the binary result obtained through
GVF in section 2.1. The motive behind using the GVF re-
sult was to base the trellis on a binary image which had more
edge characteristics than a simple thresholded binary im-
age. With this selection, the constriction at the centromere
became more pronounced. In our approach, we relied on
the following parameters to locate the centromere,

1. The width profile of the chromosome along the trellis
on the centerline which was obtained using the GVF
binary image result.

2. Density Profile (DP) obtained by getting the weighted
average of intensity values of the DAPI image (based
on Gaussian function) along the trellis, which is lim-
ited by the GVF result.

The challenge in finding the centromere by using the
above two factors was in developing a suitable framework
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for combining these two data features. We implemented a
methodology based on the concepts of ’model based seg-
mentation’ in which the features were combined using a
prior model designed to bias the most suitable feature over
the other feature for each chromosome. Metacentric chro-
mosomes are known to have a clear and more pronounced
centromere whereas acrocentric chromosomes are not. In
this work we had prior knowledge of the chromosome
which we were dealing with. Thus, based on the identity of
the chromosome, probability values or biasing factors were
calculated using the biasing prior by which the two normal-
ized feature sets were appropriately combined into a single
feature set. Centromere location was then obtained by find-
ing the global minimum in this resulting feature set.

2.4. Probe signal projection

Our objective as stated in section 1, is to detect the loca-
tion of any number of FISH probes with respect to the main
chromosome landmarks, namely the locations of the cen-
tromere and the telomere. Therefore, an accurate projection
of the probe signal onto the measuring grid (which is the
centerline in this case), is important. Many iterative point
projection methods were developed over the years which
are of zero, first and second order [6],[7],[14]. The order of
the projection methodology mainly relies on the degree of
variation of the test point (to be projected) with that of the
target surface or curve. Therefore, a simple first order tan-
gent based orthogonal projection method was selected for
this purpose and it is depicted by Figure 2.

Figure 2. The tangent based method setup.

In the setup in Figure 2, ’P’ is the point that needs to be
projected (with known coordinates (a, b)) onto the curve ’S’
which is a parameterized curve defined as in equation 2.

S = (x(s), y(s)) 0 ≤ s ≤ 1 (2)

Furthermore, ’Q’ is any point on the parameterized curve
’S’ with known coordinates (x́, ý). The point ’R’ with un-
known coordinates (x, y) is placed in such a way to make
the segment ’RP’ be orthogonal to the tangent at point ’Q’.
The above requirement commands the equation 3 to be sat-
isfied, where UQ−R is the vector from Q to R and VR−P is
the vector from R to P.

UQ−R.VR−P = 0 (3)

The value of ∆t in figure 2 is the Euclidian distance be-
tween points Q and R which can be obtained by getting the
value of

√
(x− x́)2 + (y − ý)2. Furthermore, the point R

can be expressed in terms of ∆t,the point SQ and its tangent
S̄Q in the form of equation 4 [7].

R = Q+ ∆t ∗ S̄Q (4)

Many logical algorithms have previously been developed
to move point Q towards minimizing ∆t. One such algo-
rithm [14] attempted to converge the two points based on
the equation 4. There, the final resulting point was ob-
tained by inspecting the sign (+/-) of the vector dot prod-
uct, while traversing in between two end points. In our
approach, linear traversing was adopted and starting from
one end (randomly selected) of the centerline, the point Q
was traversed by a distance ∆t/2 along the centerline. The
value of ∆t/2 was selected to assure fast convergence to-
wardsR(x, y) while avoiding overshooting the actual result
by having too high a step value.

The convergence was set to be detected by setting a
threshold for the ∆t value. But, due to high shape vari-
ability of chromosomes, this method did not guarantee the
global solution, especially on chromosomes which have a
bend angle of about 800 or above. Therefore, in order to en-
sure the validity of the projected point result, we proposed
using ’Nearest Neighbor’(NN) classification to confirm the
accuracy of the iteration result. Nearest neighbor is a very
intuitive classification method in which the user presumably
has very little or no knowledge regarding the distribution of
the test data. In our approach, the NN method was utilized
to classify one or more points from the centerline which
were the closest to the point to be projected. One of the
main drawbacks of this method was the mere possibility of
getting more than one point from the centerline as the clos-
est point. Thus, in order to use NN for finding the bench-
mark point on the centerline, the nearest points (in the case
of multiple points) were sorted according to the index and
the median of this series of points was obtained.

Next, the difference between the resulting point obtained
through initial iteration method and the NN result was com-
puted. If this difference was larger than a pre-determined
threshold (empirically set to 4 for this experiment), the ge-
ometric iteration method was carried out starting from the
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other end point of the chromosome. The final decision was
based on both iterations in that case and the projected point
was selected based on minimum difference between the NN
method and the iteration results. The median point of the
NN result was not necessarily the point of interest in our
case but served merely as a good first approximation for the
result. This algorithm for point projection is illustrated in
the flow chart in figure 3,

Figure 3. The flow chart of the point projec-
tion method used in the research.

3. Results and discussion

A novel approach for accurately detecting FISH probe
locations with respect to metaphase chromosome landmarks
in fluorescent microscopy images was presented in this pa-
per. Also, it was noted that the accuracy of the extracted
centerline as a landmark, heavily determines the outcome of
any other measurement result on the chromosome. There-
fore, we first tested the accuracy of the centerline extracted

through our method against those of the thinning method
in [11]. The proposed algorithm was tested on 66 chromo-
somes extracted from inverted DAPI stained chromosome
images captured using an epifluorescence microscope. The
chromosomes selected for the DCE based methodology did
not overlap or touch each other and they met the minimum
length criteria of 35 points (see section 2.2). The chromo-
somes used in this analysis came of three different individ-
uals from six lymphocyte cells on four microscope slides.
The centerline extracted using our algorithm was compared
with that obtained through a thinning approach [11]. Two
geneticists identified which method was better for identify-
ing the centerline of chromosomes. Preliminary results on
the expert assessment are shown in Table 2. These results
show that the DCE based method performs either equivalent
or better than thinning in nearly all instances. Results using
DCE were independent of the source of the chromosomal
material, i.e. of the patient, slide or cell that was selected.
The accuracy of the DCE based method was particularly
high in regions of chromosome bends, which occur more
frequently in longer chromosomes. Longer chromosomes
are well represented in groups A,B & C in table 2, where the
improvements of the DCE based method were apparent. In
addition, longer chromosomes are found in pro metaphase
chromosomes that are just beginning to condense in mitosis.
Another category of relatively longer chromosomes can in-
clude chromosome rearrangements such as duplications or
translocations.

Table 2. Comparative scoring of DCE vs thin-
ning algorithms - where each value gives the
number of chromosomes for which, the cen-
terline was better represented by the corre-
sponding algorithm

Class DCE Thinning Both Total
A 7 - 5 12
B 5 - 5 10
C 19 - 9 28
D 3 1 4 08
E 6 - 2 08

The results depend on parameters of two stages: namely,
the GVF segmentation and the sampling point selection.
Firstly, the segmentation outcome was observed to be
highly sensitive to the values set for the main internal
parameters of the GVF snake such as α (elasticity fac-
tor), β (rigidity factor), µ (GVF regularization factor) and
κ (external force weight). A sensible set of values for the
above factors (α = 0.05, β = 0, κ = 2, µ = 0.2) pro-
vided satisfactory results in our experiments but fine tuning
was possible through adjustment. Next, the selection of the
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sample point spacing and the starting and ending sample
point offset (from the DCE result) were observed as critical
parameters in the medial axis extraction and values were set
based on empirical observations.

The centerline through our algorithm was also observed
to be able to successfully handle bent chromosomes (as seen
in Fig 4) and extracted centerline that closely represented
the shape information of the chromosome. The sharpness of
the centerline results in Fig 4 is mainly due to the pixelation
effect of the magnified image.

Figure 4. Centerline results of representative
bent chromosomes using the proposed ap-
proach.

A preliminary experiment was carried out to test the
centromere detection process in which, 41 chromosomes
were extracted from the same sources used for the cen-
terline comparison. Figure 5 presents typical results pro-
duced by the centromere detection process along with re-
spective chromosome groups. Two geneticists identified the
accuracy of the detected centromere location and quantified
their decision into 3 different categories, namely: ’accu-
rate’, ’neighboring’ and ’inaccurate’. If the detected cen-
tromere location is within 1 chromosomal band distance
from the actual centromere location, the ’neighboring’ la-
bel was assigned. The label ’inaccurate’ was accompanied
when the error is higher than 1 chromosomal band. Out of
the 41 tested cases, only 4 was labeled as ’inaccurate’. 25
cases were labelled as accurate and 12 cases were labeled as
neighboring. These results did not depend on the chromo-
some type (acrocentric, sub-metacentric and metacentric) as

well as on the origin of the chromosome.
A preliminary analysis of probe detection by point pro-

jection was also carried out. A test probe position was arbi-
trarily assigned on a chromosome to observe and compute
the projected point on the centerline. The initial testing of
the point projection on chromosome images yielded satis-
factory results (refer figure 6).

The confidence interval circumscribing the predicted
centromere will be used during probe localization to weight
the contribution of this feature during chromosome abnor-
mality detection. Probe localization on chromosomes with
low confidence centromere placement could be biased to-
wards the relative distances to the termini of the chro-
mosome. Alternatively, a model-based approach for cen-
tromere analysis can be combined with these confidence
intervals. This would involve testing the chromosome-
specific probe for detecting a sequence in its normal con-
text, where the expected location of the centromere is al-
ready known.

(a) Group C (b) Group C (c) Group A (d) Group B

Figure 5. Some chromosome centromere de-
tection results with their respective chromo-
some groups.

4. Conclusion and future work

An algorithm that utilizes GVF active contours, DCE
based skeleton pruning and morphological thinning is pre-
sented in this paper which locates probe signal in relation
to chromosome landmarks. Future work includes a suitable
method for splitting overlapping chromosomes along with
more improvements for the end point correction method to
make this algorithm applicable to any metaphase chromo-
some. Also a refining step needs to be carried out to ob-
tain more accurate centromere locations and a methodology
needs to be formulated to reflect the confidence in the re-
fined centromere location.

The proposed algorithm is robust against image bound-
ary noises as well as the high variability of the chromosome
shapes. The ability to project FISH probe signals to an ac-
curate centerline approximation, is an important stage in de-
veloping a computer based setup to assist clinical diagnosis.
Our algorithm can be readily adopted for FISH probe signal
localization on chromosome images.
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Figure 6. Point projection results - (square -
test point : circle - projected point).

References

[1] X. Bai et al. Skeleton pruning by contour partitioning with
discrete curve evolution. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 29(03), March
2007.

[2] P. Britto and G. Ravindran. Novel findings in chromosome
image segmentation using discrete cosine transform based
gradient vector flow active contours. Information Technol-
ogy Journal, 6(1):1–7, 2007.

[3] E. Faria et al. Segmentation and Centromere Locating Meth-
ods Applied to Fish Chromosomes Images. Springer Berlin
/ Heidelberg, 2005.

[4] V. Gajendran and J. Rodriguez. Chromosome counting via
digital image analysis. In International Conference on Im-
age Processing(ICIP, pages 24–27, October 2004.

[5] J. Graham et al. Automatic karyotype analysis. Chromo-
some Analysis Protocols, 29:141–185, 1994.

[6] E. Hartmann. On the curvature of curves and surfaces de-
fined by normalforms. Computer Aided Geometric Design,
16:355 – 376, March 1999.

[7] S. M. Hu and J. Wallner. A second order algorithm for or-
thogonal projection into curves and surfaces. In Computer
Aided Geometric Design, volume 22, pages 251 – 260. El-
sevier Science Publishers, March 2005.

[8] J. Kao et al. Chromosome classification based on the band
profile similarity along approximate medial axis. The Jour-
nal of Pattern Recognition Society, 41:77–89, 2008.

[9] R. King et al. A dictionary of genetics. Oxford university
press, fifth edition, 1968.

[10] T. Kobayashi et al. Content and classification based rank-
ing algorithm for metaphase chromosome images. In IEEE
Conference on Multimedia Imaging, 2004.

[11] L. Lam and S.-W. Lee. Thinning methodologies-a compre-
hensive survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 14(09):869 – 885, September
1992.

[12] L. J. Latecki and R. Lakämper. Polygon evolution by vertex
deletion. In Proceedings of the Second International Con-
ference on Scale-Space Theories in Computer Vision, pages
398 – 409. Springer-Verlag London, UK, 1999.

[13] C. Li et al. Segmentation of edge preserving gradient vec-
tor flow: An approach towards automatically initializing and
splitting of snakes. In Proceedings of IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion, 2005.

[14] A. Limaiem and F. Trochu. Geometric algorithms for the
intersection of curves and surfaces. In Computer & Graph-
ics, volume 19, pages 391 – 403. Elsevier Science Publisher,
March 1995.

[15] M. Moradi and S. K. Saterahdan. New features for automatic
classification of human chromosomes : A feasibility study.
Pattern Recognition Letters, (27):19–28, 2006.

[16] M. Moradi et al. Automatic locating the centromere on hu-
man chromosome pictures. In 16th IEEE Symposium on
Computer-Based Medical Systems, 2003.

[17] N. Otsu. A threshold selection method from gray-level his-
tograms. IEEE Transactions on Systems, Man, and Cyber-
netics, 9(1):62–66, 1979.

[18] D. Pinkel and J. Landegent. Fluorescence in situ hybridiza-
tion with human chromosome-specific libraries: Detection
of trisomy 21 and translocations of chromosome 4. Proc.
Nati. Acad. Sci. USA, 85:9138–9142, December 1988.

[19] J. Piper and E. Granum. On fully automatic feature mea-
surement for banded chromosome classification. Cytometry,
10:242–255, 1989.

[20] M. Popescu et al. Automatic karyotyping of metaphase cells
with overlapping chromosomes. Computers in Biology and
Medicine, 29(1):61–82(22), January 1999.

[21] G. Ritter and G. Schreib. Using dominant points and variants
for profile extraction from chromosomes. Pattern Recogni-
tion Journal, (4):923–938, April 2001.

[22] X. Wang et al. A rule-based computer scheme for cen-
tromere identification and polarity assignment of metaphase
chromosomes. Computer Methods and Programs in Bio
Medicine, 89:33–42, 2008.

[23] P. M. . R. Ward. Feature analysis and centromere segmenta-
tion of human chromosome images using an iterative fuzzy
algorithm. IEEE Transactions on Biomedical Engineering,
49(04), April 2002.

[24] G. Wolf et al. A pc-based program for evaluation
of comparative genomic hybridization (cgh) experiments.
http://amba.charite.de/cgh/publ/01/publ01b.html.

[25] C. Xu and J. L. Prince. Gradient vector flow: A new external
force for snakes. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
1997.

230


