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ABSTRACT

Centromere localization in human metaphase chromosomes
is an essential task in many cytogenetic diagnosis procedures.
The centromere location can be utilized to derive informa-
tion such as the chromosome type, polarity assignment etc.
Methods available in literature yield unreliable results mainly
due to high variability of morphology in metaphase chromo-
somes and boundary noise in the image. In this paper we
have proposed a multi-staged algorithm which utilizes both
contour information as well as intensity information to obtain
a more accurate centromere location. The width information
along the axis of symmetry is obtained using a novel Lapla-
cian based thickness measurement algorithm. The proposed
method was observed to be more accurate compared to the
state of the art when tested with 226 human metaphase chro-
mosomes.

Index Terms— Centromere detection, chromosome anal-
ysis, Laplacian based thickness measurement

1. INTRODUCTION

The centromere is the most constricted region of a chromo-
some, to which the spindle fiber is attached during mitosis
(cell division). The centromere location can be used for deriv-
ing information such as chromosome type, number and also
in diagnostic processes such as chromosome dicentric assay.
The width profile which can be defined as the sequential width
measurements along the centerline or the axis of symmetry of
the chromosome, is an important measurement used for de-
riving the centromere location. The high morphological vari-
ability in the way chromosomes sit on a microscope slide can
introduce error into the measurement of the centromere lo-
cations for most existing methods. These methods can be di-
vided into two categories based on the fundamental approach.
Each of those categories can be described as follows.
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1.1. Centerline based methods

These methods derive the width profile mainly by sampling
the width along the chromosome centerline. A majority of
existing methods fall under this category. Piper and Granum’s
approach towards this was to achieve the second moment of
the profile of the chromosome along its centerline [1]. Moradi
and Saterahdan took the average of image intensity along scan
lines perpendicular to the centerline and used wavelet de-noising
to remove sharp perturbation in the density profile (DP) [2].
They then classified the chromosomes with the use of a trained
artificial neural network (ANN). Similarly, Wang et al. ex-
tracted the shape profile, density profile and the banding pat-
terns using scan line sampling and then used a rule based
setup to detect the chromosome centromere which claimed
to have improved the reliability of the result [3]. The width
profile in these methods is obtained after drawing scan lines
or trellis structures which are perpendicular to the centerline
of the chromosome. Since noise on the object boundary is
represented in the centerline, the scan lines tend to miss the
actual constriction at the centromere location. This can lead
to high false positives in the centromere localization process.
Furthermore, all these methods are prone to having spurious
branches in the centerline of the chromosome. We previously
proposed an algorithm for obtaining a more accurate and reli-
able centerline for the chromosome [4]. However this method
also could yield false positives due to noisy centerline data
points.

1.2. Other methods

Several algorithms have been published, that do not use the
centerline for finding the constriction that marks the centromere.
For example, Moradi et al. [5] took the horizontal and verti-
cal projection vectors of the binary segmented chromosomes
to detect the centromere location. This method did not per-
form satisfactorily for both acrocentric chromosomes as well
as for any chromosome with a bend greater than 90 degrees.

Centerline based methods generally perform better than
those which are not. Yet, the centerline based width profile
is highly susceptible to noise in the centerline. Therefore, we
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propose a method which utilizes the centerline not as a base
for width profile measurement but as a means to divide the
chromosome into two symmetric partitions. This algorithm
is also capable of utilizing intensity information present in
the chromosome images through various staining methods for
obtaining better results.

2. PROPOSED METHOD

The proposed method first performs the segmentation and then
extracts the centerline of each chromosome. Next, an im-
proved Laplacian based thickness measurement method was
used for obtaining the width/intensity profile, which in turn
is used for chromosome centromere localization. Each of the
above stages will be discussed further in the subsequent chap-
ters.

2.1. Segmentation and centerline extraction

Images were pre-processed using intensity normalization fol-
lowed by median filtering to suppress noise while preserving
edges.

The algorithm discussed in our previous publication [4]
was used for obtaining the segmentation and the centerline
of the chromosome. This algorithm performs the segmenta-
tion by first thresholding the image based on Otsu’s method
and then using the contour of the binary object as the starting
point for Gradient Vector Flow (GVF) active contour model.
The GVF is a segmentation model that could converge into
concave boundaries, while having a high capture range [6].
This is highly useful when dealing with chromosomes which
in general possesses highly variable morphologies.

The centerline is a shape descriptor based on the topo-
logical skeleton of the object, which produces a longitudi-
nal axis of symmetry. The centerline was obtained using a
skeleton pruning method based on Discrete Curve Evolution
(DCE) [7]. DCE algorithm evolves polygon partitions by ver-
tex deletion based on any given relevance measurement [8].
Subasinghe A. et al. [4] provide specifics regarding the uti-
lization of the DCE based method for obtaining the center-
line.

The binary segmentation of the chromosome is used solely
to obtain the contour of the object while the centerline is
merely used for partitioning the chromosome contour into ap-
proximately symmetrical halves near the telomere regions of
the chromosome. By doing so, we can prevent the noise along
the centerline from adversely affecting the centromere local-
ization process.

2.2. Laplacian based thickness measurement & Centromere
detection

The Laplacian operator (∆) can be used to obtain the steady
state of heat flow or voltage distribution between two heated

or charged surfaces. By retaining the two longitudinal con-
tour sides at two different potentials or temperatures, we can
derive a set of equipotential lines in the static vector field cre-
ated by the heat flow in steady state according to the Laplacian
equation [9]. Then using simple incremental methods, thick-
ness can be traced from one side to the other by traversing
normal to these equipotential lines. The Euclidean length of
all these small segments sum to the thickness at each cross-
section of the object. This method gives a uniform sampling
of the width profile better than techniques based on the cen-
terline.

Yet, since this set up solely depends on the contour infor-
mation for deriving the vector field, it can be susceptible to
boundary noise in chromosome images. Most chromosome
images contain some amount of intensity band information
(depending on the staining technique) which can be used to
assist the thickness measurement process. Therefore we pro-
pose a new algorithm by adding a flexible framework for in-
corporating intensity information into the standard Laplacian
based thickness measurement process.

2.2.1. Intensity integration

Intensity information can be utilized to assist thickness mea-
surements of textured objects in chromosome images. Band-
ing information in chromosomes comes with many staining
methods and is in general oriented normal to the object con-
tour. Therefore, we have proposed to incorporate intensity
information into static vector filed calculations using a lo-
cal weighting scheme based on image intensity. The objec-
tive of this is to guide the Laplacian static field across the
breadth of the object, based on neighboring pixel intensity
values. By taking intensity information into consideration,
the thickness measurement process can be adjusted to yield
more accurate results. This inclusion minimizes the effects of
boundary noise on the chromosome width profile and in turn
on the centromere detection process.

The standard Laplacian static vector field based thickness
calculation method guides a set of high potential contour points
towards their unique closest set of points on the other con-
tour [10]. The application of the standard Laplacian equation
to a digital image can be easily performed by averaging the
immediate neighborhood of a pixel and then subtracting that
average from the pixel value.

The intensity information in the proposed method was
simply used to bias the field towards the desired intensity pat-
tern. This was achieved by using the weighting scheme de-
scribed below.

Given the intensity image (I) which contains the object
of interest, a total of 8 matrices (digital images) were created
based on connectivity and directional intensity gradients (as a
vector defined in (x, y) space) with identical dimensions to I
as follows,



∇~I(i,j) = abs[I(x, y)− I(x + i, y − j)] (1)
(i, j) = {i, j ∈ (−1, 0, 1), (i, j) 6= (0, 0)}

For simplicity and clarity, remaining steps will be described
using the generic term ∇~I(i,j). Next, all the matrices were
normalized to the interval (0 , 1), using the maximum abso-
lute intensity difference in that direction. Then, the matrix
values were inverted within the same range of (0 , 1) by sub-
tracting each matrix value from 1. The matrix ∇~I(i,j) will
now yield values close to unity where intensity level in the
neighborhood is similar. Similarly this will also give smaller
values (close to 0) for pixels with high intensity gradients. To
address cases where intensity patches are parallel to the ob-
ject contour, the proposed algorithm can be modified by sim-
ply removing the inverting step for all 8 matrices. By doing
so, the weighting factors will bias towards higher intensity
differences instead of homogenous regions.

The normalized intensity based weighting matrices were
then re-scaled according to equation 2, where b is a scalar
value between (0 , 1) which will be referred to as the ’control
variable’ henceforth. Therefore the values in the weighting
matrix ∇~I(i,j) will vary in the interval of (b , 1). Empirically
the control variable b was set to 0.9 for all our experiments.

∇~I(i,j) = ∇~I(i,j) ∗ (1− b) + b (2)

The purpose of the control variable b is to scale or con-
trol the influence of the intensity variation on the proposed
Laplacian calculation. A lower value for b will increase the
influence of the intensity information and vice versa. There-
fore, a value of 1 for the control variable will calculate the
standard Laplacian vector field with no influence from the in-
tensity values. This value has to be set based on how promi-
nent and consistent the intensity patterns are in a given image.
Practical range of values would lie between the limited range
of (0.7 , 1) for this experiment.

Once these sets of intensity weighting factor matrices are
calculated, those values can be directly used to change the
Laplacian static field calculated at each iteration. Therefore
instead of the standard Laplacian kernel, we propose to use
the intensity integrated kernel, which is now defined for each
(x , y) coordinate location in the image. Now we have a
static vector field generation process that includes both non-
uniform and local shape features depending on the intensity
variation in the region and the control variable b which con-
trols the amount of biasing. When using the standard Lapla-
cian kernel, every pixel influences the 8 connected neighbors
uniformly. Whereas, in the proposed method, each pixel af-
fects the neighboring pixels based on the degree of similar-
ity or differences in the respective intensity values. Its also
important to realize that these weight matrices are static in
nature and do not change with each iteration. Therefore, the

proposed algorithm is comparable with the standard Lapla-
cian calculations from in computational cost.

Next, the gradients at each pixel location (Φ) were calcu-
lated along the two major axes (x and y) using neighborhood
pixel values as given below,

Φ(x, y)

∆x
=

(B(x + ∆x, y)−B(x−∆x, y))

2
Φ(x, y)

∆y
=

(B(x, y + ∆y)−B(x, y −∆y))

2
(3)

Then each of these gradient components were normalized
and stored in matrices Nx and Ny using the magnitude of the
vector at each pixel. The matrices Nx and Ny contain the
intensity biased Laplacian static field vector components for
x and y axis directions.

Once the proposed intensity integrated Laplacian static
field is derived, the corresponding contour points and the dis-
tance between them were calculated using Euler’s method to
calculate the thickness corresponding for all contour points.
In order to avoid incorporating the telomere region width mea-
surements, the profile was pruned on either side by 10% (se-
lected empirically) of the total number of points on the con-
tour segment. This reduce the chance of detecting a telomere
of a chromosome as a centromere location.

Fig. 1. The steps of tracing the thickness (yellow stars) at
one contour location of the chromosome. The final thickness
value is calculated by getting the sum of all the lengths of
these small steps.

The collection of these thickness values constitutes the
width profile of the chromosome. Figure 1 depicts the steps
of tracing the thickness at one contour location of the chro-
mosome. The centromere location is detected by obtaining
the global minimum of this width profile.

3. RESULTS

We have tested the accuracy of the proposed method in de-
tecting centromere locations in 226 human metaphase chro-
mosomes against that of a state of the art method [11]. These



chromosomes, with no overlaps or touches of neighboring
chromosomes, were selected from 12 lymphocyte metaphase
cells. The centromere locations were detected using the same
methodology after obtaining the width profile measurements
using the two different methodologies. The centromere lo-
cation manually recorded by an expert was used as the ’gold
standard’ in the analysis. Since the chromosome centromere
is a region as opposed to a single location, the expert was in-
structed to draw a line across the centromere region. Then,
the perpendicular distance from the pixel location given by
the algorithm to the user drawn line segment is calculated as
the error of detection. By doing so, any displacement of the
detected centromere location along the drawn centromere line
would be trivial. These error values will be denoted by EL

and EC for the error of the Laplacian based proposed method
centromere and the state of the art centerline method result
respectively and will be referred here after. Table 1 provides
a summary of the error metric values (in units of pixels) ob-
tained for the data set.

Table 1. Descriptive values for the detection error data set
when analyzed with proposed Laplacian based method (EL)
and the state of the art Centerline based method (EC).

Descriptive Statistics
N Mean Kurt- Skew-

Stat. Std. Error -osis -ness
EL 226 4.0243 .4535 17.859 3.839
EC 226 8.7819 .7749 2.657 1.834

The proposed algorithm yields a smaller error mean value
while maintaining a smaller standard error of mean. This be-
havior can be further supported by the skewness and kurtosis
values obtained for the proposed method as opposed to the
centerline method. The higher kurtosis value suggests a tight
clustering of error values around the peak while the higher
skewness depicts an asymmetric distribution biased towards
lower error value. The direction of the bias was observed
through a simple histogram plot of error values.

4. CONCLUSION AND FUTURE WORK

We have presented a novel intensity integrated Laplacian based
method for detecting centromere locations in human metaphase
chromosomes more accurately. The results compared to a
state of the art centerline based method have demonstrated
encouraging results and warrant further investigation.

We will attempt to generalize the algorithm in future and
make it applicable to other similar measurement problems.
Thorough schemes of statistical analyzes are required to val-
idate the accuracy improvements of the proposed method as
well as to explore inter and intra observer variability in man-
ually detecting centromere locations. In addition, we plan
to develop the algorithm further to detect dicentric chromo-

somes.
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