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Abstract
Accurate detection of the human metaphase chromosome centromere is a
critical element of cytogenetic diagnostic techniques, including chromosome
enumeration, karyotyping and radiation biodosimetry. Existing centromere
detection methods tends to perform poorly in the presence of irregular
boundaries, shape variations and premature sister chromatid separation. We
present a centromere detection algorithm that uses a novel contour partitioning
technique to generate centromere candidates followed by a machine learning
approach to select the best candidate that enhances the detection accuracy.
The contour partitioning technique evaluates various combinations of salient
points along the chromosome boundary using a novel feature set and is able to
identify telomere regions as well as detect and correct for sister chromatid
separation. This partitioning is used to generate a set of centromere candidates
which are then evaluated based on a second set of proposed features. The
proposed algorithm outperforms previously published algorithms and is shown
to do so with a larger set of chromosome images. A highlight of the proposed
algorithm is the ability to rank this set of centromere candidates and create a
centromere confidence metric which may be used in post-detection
analysis. When tested with a larger metaphase chromosome database
consisting of 1400 chromosomes collected from 40 metaphase cell images, the
proposed algorithm was able to accurately localize 1220 centromere locations
yielding a detection accuracy of 87%.
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Introduction
The centromere of a human chromosome (Figure 1) is the primary 
constriction to which the spindle fiber is attached during the cell 
division cycle (mitosis). The detection of this salient point is the 
key to calculating the centromere index which can lead to the type 
and the number of a given chromosome. The reliable detection of 
the centromere by image analysis techniques is challenging due 
to the high morphological variations of chromosomes on micro-
scope slides. This variation is caused by various cell preparation 
and staining methods along with other factors that occur during 
mitosis. Irregular boundaries and large variations in chromosome 
morphology can cause a detection algorithm to miss the constric-
tion, especially in high resolution chromosomes. Premature sister 
chromatid separation can also pose a significant challenge, since the 
degree of separation can vary from cell to cell, and even among chro-
mosomes in the same cell. In such cases, the width constriction can 
be missed by image processing algorithms, and can result in incor-
rect localization of a centromere on one of the sister chromatids.

From an image analysis perspective, the high morphological vari-
ations in human chromosomes, due to their non rigid nature, pose 
a significant challenge. Cell preparation and staining techniques 
also vary among the laboratories. The end results obtained from 
clinical cytogenetic vs. reference biodosimetry laboratories can 
produce chromosome images that differ significantly in their 
appearance. As an example, chromosomes that were DAPI (4’,6-
diamidino-2-phenylindole) stained shows different intensity fea-
tures and boundary characteristics from chromosomes subjected 
only to Giemsa staining. Additionally, the stage of metaphase in 
which the cells were arrested along with environmental factors 
such as humidity during slide preparation can dictate the shape 
characteristics of individual cells and introduce a large variance to 
the data set. Furthermore, in some preparation methods, the cells 
are denatured, causing the detected chromosome boundary to be 
erratic. These same factors can also dictate the amount of pre-
mature sister chromatid separation in some of the cells. Effective  
algorithms for centromere detection need to be able to handle the 
high degree of shape variability present in different chromosomes, 
while correcting for artifacts such as premature sister chromatid 
separation. Figure 2 illustrates a sample set of shapes of chromo-
somes in the data set and their high morphological variations.

This research forms an essential component of detecting dicentric 
chromosomes (possessing two centromeres) which is used as a 
diagnostic test of radiation exposures in cytogenetic biodosimetry. 

Figure 1. Demonstrates the anatomy of a human metaphase 
chromosome using a simple graphical design with key 
components labeled.

Figure 2. Depicts various degrees of sister chromatid separation 
present in some Giemsa stained chromosome images (Figure 2(a)–
(c)) as well as some longer chromosomes characteristics of those 
prepared at a clinical cytogenetic laboratory (Figure 2(d)–(f)).

The ability of the proposed algorithm to handle high degrees of 
morphological variation and also to detect and correct for the 
artifact created by premature sister chromatid separation in 
cell images is also critical to detecting dicentric chromosomal 
abnormalities.

Numerous computer algorithms have been proposed over time for 
chromosome analysis ranging from metaphase finding1, karyotype 
analysis2 to centromere and dicentric detection3,4. These methods  
are either constrained by the protocol used for staining the cell image 
or by the morphology of the chromosome. We have previously  
proposed an algorithm to locate the centromere by calculating a cen-
terline with no spurious branches irrespective of boundary irregulari-
ties or the morphology of the chromosome5. This was later improved 
by using a Laplacian-based width-profile generation algorithm that 
integrates intensity measurements in a weighting scheme, biases 
the thickness measurement by tracing vectors across regions of  
homogeneous intensity6. Mohammad proposed an approach where 
he used our previous approach to derive the centerline and then used 
a curvature measure to localize the centromere location instead of the 
width measurements7. Another interesting approach by Jahani and 
Setarehdan involves artificially straightening chromosomes prior to 
creating the trellis structure using the centerline derived through 
morphological thinning8. Yet all these methods, including our  
previous approach, work well only with smooth object boundaries. 
The absence of a smooth boundary will directly affect the center-
line and thus make the feature calculations noisy. Furthermore, 
the accuracy of all these methods is adversely impacted by sister 
chromatid separation. Although a commercial system exists for  
detecting dicentric chromosomes, it is semi-automatic and requires 
manual review of cells9. Furthermore, no published accuracy fig-
ures for detection of centromeres exist for this system. We propose 
a candidate based centromere localization algorithm capable of 
processing highly bent chromosomes prepared with a variety of 
staining techniques. This method can also detect and correct for 
artifacts introduced by premature sister chromatid separation.

(a) (b) (c)

(d) (e) (f)
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To address image processing artifacts arising from sister chro-
matid separation, the proposed algorithm utilizes a new contour 
partitioning technique which identifies the telomere regions. This 
partitioning technique evaluates various combinations of salient 
points along the chromosome boundary by using machine learning 
together with a specially designed set of features. The partitioned 
contour is then used to generate a set of centromere candidates using 
local minima of the width profile. These centromere candidates are 
then classified using machine learning with a second set of features 
which incorporates contour shape as well as intensity information. 
This paper also introduces the Candidate-Based Centromere Confi-
dence (CBCC) metric, which we use as an indicator of confidence 
of the detected location of the centromere. This metric is used in 
tests of the algorithm on a larger data set of chromosomes, with  
the aim of validating the performance of the algorithm.

The following section describes the proposed algorithm in detail. 
In section we show how this algorithm performed with a large data 
set and in section we comment on the performance and how it com-
pares with other methods.

Methods
This section describes the proposed candidate based centromere 
detection algorithm in detail. This method can be functionally 
divided into the following steps for clarity, 

1. Segmentation & centerline extraction

2. Contour partitioning & correcting for sister chromatid 
separation

3. Candidate point generation & metaphase centromere 
detection

Of these, step 1 was performed using algorithms that were 
published by us previously5,6. A brief description of this is included 
below for improved readability.

The chromosome database was created by manually selecting 
individual chromosomes that are well separated. During this proc-
ess, images of cells with incomplete chromosome complements 
and those with higher densities of overlapping or touching chromo-
somes were discarded using a content-based classification proce-
dure as described by others10. We have also developed Automated 
Dicentric Chromosome Identifier (ADCI) software which can 
automatically select individual chromosomes11. However, it was not 
used in this study.

Step 1: Segmentation & Centerline extraction
Pre-processing steps for each chromosome image include appli-
cation of a median filter followed by intensity normalization. 
The chromosome is then tresholded using Otsu’s method and 
the contour of that binary object is used as the starting point for  
Gradient Vector Flow (GVF) active contours. The use of GVF 
active contour algorithm produces a contour that is smooth and  
that converges to boundary concavities12.

In order to calculate the width profile of the chromosome using the 
thickness measuring algorithm, the chromosome contour is divided 
longitudinally into two approximately symmetric segments. We 

used Discrete Curve Evolution (DCE) based skeletal pruning5  
to obtain an accurate centerline. DCE is a polygon evolution  
algorithm which evolves through vertex deletion based on a rel-
evance measurement13. Using DCE, the chromosome boundary is 
reduced to the smallest possible polygon (a triangle). The short-
est branch of the resulting skeleton is pruned to yield two points  
which belongs to the two ends (telomeres) and are used to obtain 
the centerline through the chromosome. These are called anchor 
points and denoted by EP.

Throughout this paper, we use the supercript P to refer to various 
point sets on the chromosome object contour C ∈ 2R . This set of 
points is used for contour partitioning in the next section.

Step 2: Contour partitioning & correcting for sister 
chromatid separation
Sister chromatid separation in chromosomes is an integral proc-
ess that occurs during the metaphase stage of mitosis. Depending 
on the stage of mitosis at which the cells were arrested, varying 
degrees of sister chromatid separation may be evident. Furthermore 
long exposure to colcemid, a chemical agent which is used mainly 
as a preparatory chemical in biodosimetry studies to maximize the 
number of metaphase cells, can cause or exacerbate this condition 
and produce sister chromatid separation. It is important that the 
algorithm and associated software be able to analyze chromosomes 
with sister chromatid separation.

Accurate partitioning of the telomere region is necessary to iden-
tify evidence of sister chromatid separation and therefore correct 
for any such artifact as well as to split the contour into two seg-
ments accurately. Curvature of the contour is one of the most com-
monly used features for detecting salient points that can be used for  
partitioning14. An important requirement is that the location of these 
salient points needs to be highly repeatable under varying levels of 
object boundary noise. The DCE method described in the previ-
ous section was used again to provide a set of initial salient points 
on the contour of the chromosome outline. This is because this  
method performs well with boundaries regardless of whether they 
are smooth or not, yielding repeatable results15. The ability to ter-
minate the process of DCE shape evolution at a given number of 
vertices further lends to its applicability. It was empirically estab-
lished that a termination at 6 points would ensure that the required 
telomere end points will be retained within the set of candidate sali-
ent points. Two of those 6 points will include the anchor points, 
EP obtained in the previous step (section). Contour partitioning is 
performed by selecting the best 4 point combination (including  
the two anchor points) that represents all the telomere end points.

The approach for selecting the optimal contour partitioning point 
combination occurs in two stages. Initially, a SVM classifier using 
features 1 11–s sF F (described below) was trained to detect and label 
preferred combinations from the given 12 possible combinations 
for each chromosome. At this stage, all the combinations across 
the data set are used as a pool of candidates to train the classifier. 
Then, the signed Euclidian distance from the separating hyperplane 
(say ρ) is computed for each of the candidates for a given chro-
mosome, considering only the combinations of that chromosome. 
This process ranks all the candidates according to the likelihood 
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they are a preferred candidate. Unlike traditional rule-based ranking 
algorithms, this approach requires very little high level knowledge 
of the desirable characteristics. The positioning of the separating 
hyperplane encapsulates this high level information through user-
specified ground truth. The highest-ranked candidate is selected as 
the best combination of contour partitions for the given chromo-
some. The formal description of this procedure follows.

Let Φ
h
 be the curvature value at candidate point h and S ∈ 2R  be 

the skeleton of the chromosome with 6 DCE point stop criteria. We 
now define the following set of points (see Figure 3), 

• DP (⊂ C) is the set of six DCE vertices.

• EP is the set of two anchor points

• SP = DP – EP constitutes of all the points in DP except the 
anchor points (EP). These are the four telomere end-point 
candidates.

Then the family of sets TP for all possible combinations with the 
sets EP and SP would contain,

{ } { }
{ } { }
{ } { }
{ } { }
{ } { }
{ } { }

1 1 2 2 1 1 2 3

1 1 2 4 1 2 2 1

1 2 2 3 1 2 2 4

1 3 2 1 1 3 2 2

1 3 2 4 1 4 2 1

1 4 2 2 1 4 2 3

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , .

P P P P P P P P

P P P P P P P P

P P P P P P P P

P P P P P P P P

P P P P P P P P

P P P P P P P P

E S E S E S E S

E S E S E S E S

E S E S E S E S

E S E S E S E S

E S E S E S E S

E S E S E S E S

Figure 3 illustrates one such combination where the selected 
(connected by the blue line segments) combination for the 
contour partitioning points are given by { }1 4 2 1, , , .P P P PE S E S

In order to identify the best possible combination for contour par-
titioning, we have used a SVM classifier trained with the 11 differ-
ent features ( 1 11–s sF F ) indicated below. Features 1

sF and 2
sF  provide 

an indication to the saliency of the candidate point with respect 
to the skeletonization process. Features 3

sF  to 5
sF  are three nor-

malized features which capture the positioning of each candidate 
in the given combination. 6

sF  and 7
sF  represent the shape or the 

morphology of the chromosome of interest (same values for all 12 
combinations). The rationale behind the inclusion of these features 
is that they account for morphological variations across the cell 
images in the data set. 8

sF  and 9
sF  represent the curvature of the 

candidate points as well as the concavity/convexity of those loca-
tions. The features 10

sF  and 11
sF  are two Euclidean distance-based 

features which capture the proportion of each telomere region in 
the combination to the perimeter of the rectangle made by connect-
ing the 4 candidate points. During our investigation, we observed 
a significant improvement of the accuracy of classification by the 
inclusion of these two features.

Let d (p, q) denote the Euclidean distance between the points p and 
q. Similarly let l (p, q) represent the length of the curve between 
p and q, which are points from the set DP. Then, for each contour 
partitioning combination in TP given by { }1 2, , , ,P P P P

i jE S E S  (where i and 
j are integer values such that 1 ≤ i, j ≤ 4 and i ≠ j), two main length 
measurement ratios (r

1
 and r

2
) are used for both calculating length 

based features, as well as for normalizing these features. r
1
 = ( )

( )
1

1

,

,
i

j

p p

p p

l E S

l E S

yields the chromosome width/length with respect to the anchor 
point 1

pE  for the given contour partitioning combination (refer 
Figure 3). Similarly r

2
 = 

 

( )
( )

2

2

,

,
i

j

p p

p p

l E S
l E S  

is calculated with respect to the 
anchor point 2

pE . Then, the set of features F
s  for each contour 

partitioning combination is defined as follows, 

1.  1
sF  = 1 if the point P

iS belongs to a skeletal end point 
( P

iS ∈ (S ∩ C)). Otherwise, 1
sF = 0.

2.  

 
2
sF  = 1 if the point P

jS belongs to a skeletal end point 
( P

jS  ∈ (S ∩ C)). Otherwise, 
2
sF  = 0.

3.  ( )
1 2

3
1 2

–
1

,
s r r

F
max r r

 
 = −
   where 0 < 3

sF  < 1. This calculates the chro-
mosome width/length ratio for each anchor point and the 
difference between the two measures. Two similar fractions 
would result in a high value for the feature 3

sF .

4.  ( )
1

4
1 2

1
,

s r
F

max r r

 
= − 

  where 0 < 

 
4
sF  < 1. This calculates the 

chromosome width/length ratio with respect to the first 
anchor point ( 1

pE ). Except for smallest chromosomes at the 
highest degree of metaphase condensation, the telomere axis 
is shorter than the longitudinal dimension of the chromo-
some. Therefore, a lower length ratio measurement is a higher 
value for the feature 

 
4
sF  and is a desirable property.

5.  ( )
2

5
1 2

1
,

s r
F

max r r

 
= − 

  where 0 < 5
sF  < 1. This is same as 

 
4
sF , 

but from the other anchor point, 2
pE .

6.  
6
sF : ratio of length of the chromosome to area of the 

chromosome. This provides a measure of elongation of a 
chromosome.

Figure 3. Demonstrates one possible combination for contour 
partitioning where the anchor point (red ‘+’ sign) 

1
pE  is connected 

with the candidate point 4
pS  while the other anchor point 2

pE  is 
connected with candidate point 1

pS  which captures the telomere 
regions (yellow ‘+’ sign). The (blue) line connects the set of points 
constituting the combination considered in this instance.
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7.  7
sF : ratio value of perimeter of the chromosome to the area 

of the chromosome. This provides a measure of how noisy the 
object boundaries are.

8.  8
sF : average of the curvature values Φ

h
 of the candidates. The 

curvature is an important measurement of the saliency of the 
candidate points.

9.  
9
sF : number of the negative curvature values (Φ

h
 < 0) of 

the candidates points ( P
iS and P

jS ). The telomere region end 
points are generally characterized by points with high con-
vexity. The number of negative angles yield how concave the 
points of interest are.

10.  
( )1

10

,P P
is d E S

F
D

=  where ( )
2

, ,1
, .P P

x y

x

y i jx
D d E S

=

==
=∑  This feature 

calculates the normalized Euclidean distance between the 
anchor point 

 
1
EP and the candidate 

 

S
iP  which makes up one 

telomere region.

11.  
( )2

11

,P P
js d E S

F
D

=  where ( )
2

, ,1
, .P P

x y

x

y i jx
D d E S

=

==
=∑  This is the same 

as feature 10
sF , but calculated for the other anchor point.

A data set of 1400 chromosomes was collected from 40 metaphase 
cell images, which together yield 16,800 possible combinations of 
feature sets for contour partitioning. Three expert cytogeneticists 
marked the viable combinations of the salient points that capture 
the telomere regions for training the SVM classifier. The procedure 
involved training and testing with 2 fold cross validation (50% - 
train data, 50% - test data). We obtained accuracy, sensitivity and 
specificity values of 94%, 97% and 68%, respectively. The results 
demonstrate the ability of the feature set to effectively detect good 
combinations of candidate points for partitioning telomere regions. 
Although the low specificity suggests that some false positive 
telomeres were detected, this did not affect the accuracy of the 
contour partitioning, since the algorithm picks the optimal combi-
nation based on its rank rather than the classification label.

Correcting the deviation of the centerline for the effects of prema-
ture sister chromatid separation can be a difficult problem to solve. 
Once the best combination for the end points of the telomere region 
is selected, the telomere portions are segmented. Premature sister 
chromatid separation is detected from differences in the chromo-
some shape in the telomere region. This problem is solved with an 
algorithm that creates a set of features using functional approxi-
mation of the shape characteristics unique to premature sister 
chromatid separation and is derived from the coefficients calculated 
for each telomere6. A second SVM classifier is trained on these 
features to effectively detect these inherent shape variations of the 
sister chromatids. Once identified, correction is performed by 
extending the sample point (on the pruned centerline) to pass 
through the mid point of the partitioned telomere region. By get-
ting the contour partitioned accurately, the correction process is 
significantly simplified.

Step 3: Candidate point generation & metaphase centromere 
detection
In a previously described candidate-based approach, four candidate 
points were selected based on the minima values from the width 

profile16. However, this limits the number of possible locations that 
could be detected as the centromere location. Especially in cases 
where a high degree of sister chromatid separation is evident, 
limiting the search to just few candidates can have adverse effects. 
Therefore, we consider all possible local minima locations as 
candidates for the centromere location in a given chromosome, 
which are selected using the simple criteria given below.

Our notation p is used to refer to any other point(s), in general. Let 
the contour C be partitioned into two contour segments C1 (starting 
segment for tracing lines) and C2 (see Figure 4). Width profile was 
calculated using an intensity integrated Laplacian method6 which 
minimizes impact from irregular boundary of the chromosome 
segmentation by guiding the width profile trace lines to be con-
tained within chromosome bands, which are regions with simi-
lar intensities. The width measurement of the normalized width 
profile at the discrete index λ (W (λ)) is obtained using the 
trace line which connects the contour points the set of candi-
date points for the centromere λ

1C  and λ
2C  from the two contours 

C1 and C2. Then, the set of candidate points for the centromere 
location pC (which stores the indices λ), where the local minima 
conditions of W(λ – 1) < W(λ) < W(λ + 1) and W(λ – 2) < W(λ) < 
W(λ + 2) are fulfilled for all valid locations λ of the width profile. 
In cases where the above condition failed to secure any candidates 
(mainly on extremely short chromosomes), the global minima was 
selected as the only candidate. Next, the following two sets of indi-
ces are created to correspond with each given element pC (α) of pC, 

•  pmL(α) = W(β) where W(β) > W(γ), ∀γ < pC (α). Here 
pmL(α) stores the index of the global maxima for the 
portion (referred to as a regional maxima, henceforth) 
of the width profile prior to the candidate minima index 
pC (α).

•  pmR(α) = W(β) where W(β) > W(γ), ∀γ > pC (α). Simi-
larly, pmR(α) stores the index of the global maxima for the 
portion of the width profile after the candidate minima 
index pC (α).

Figure 4. Illustrates an example where the contour C is split into 
two approximately symmetric segments C1 and C2. The width 
trace line, in red, connects the points 

λ
1C  and 

λ
2C  of the two contour 

segments.
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Once the centromere candidate points pC and their corresponding 
maxima points pmL and pmR are calculated, the set of features Fc are 
calculated as given below. A set of 11 features 1 11–c cF F are proposed 
to train the third SVM classifier which will then be used to calculate 
the best candidate for a centromere location in a given chromo-
some. Features 

1
cF  to 3

cF  provide an insight on the significance 
of the candidate point with respect to the general width profile dis-
tribution. The normalized width profile value itself is embedded in 
features 

4
cF  and 

8
cF  where the latter scales the minima based on 

the average value of the width profile. Features 5
cF  and 6

cF  capture 
the contour curvature values that are intrinsic to the constriction at 
the centromere location. Features 7

cF , 9
cF  and 

 
10
cF  include distance 

measures which indicate the positioning of the candidate point with 
respect to the chromosome as well as to the width profile shape. 
Finally the feature 

 
11
cF  records the staining method used in the cell 

preparation. This gives the classifier a crucial piece of information 
that is then used to accommodate for specific shape features that 
may be the result of the particular laboratory procedure used to pre-
pare and stain the sample.

Let i be a candidate member number assigned among the pool of 
centromere candidates. Also, let d(1, i) be the Euclidean distance 
along the midpoints of the width profile trace lines (centerline) 
from a telomere to the candidate point, and L be the total length 
of the chromosome. In the following description, .  represents the 
absolute value, 

1.  

 
( )( ) ( )( )=1 – .C mLcF W p i W p i  This feature calculates the 

absolute width profile difference between the candidate and 
the regional maxima prior to the candidate point on the width 
profile.

2.  ( )( ) ( )( )= −2 .C mRcF W p i W p i  This feature calculates the 
absolute width profile difference between the candidate and 
the regional maxima beyond the candidate point on the width 
profile.

3.  
3
cF  = 

1
cF  + 2

cF  which calculates the combined width profile 
difference created by the candidate point.

4.  4
cF  = W(pC (i)). This captures the value of the width profile 

(0 ≤ 
4
cF ≤ 1) at the candidate point location.

5.  
5
cF  is the local curvature value at the contour point λ

1C  which 
corresponds to the current centromere candidate location 
(where λ = pC (i)).

6.  6
cF  is the local curvature value at the contour point 

λ
2C  which 

corresponds to the current centromere candidate location 
(where λ = pC (i)).

7.  
7
cF  = min (d(1, i), L – d(1, i))/L. Gives a measure where the 

candidate is located with respect to the chromosome as a frac-
tional measure (0 ≤ 7

cF  ≤ 0.5).

8.  8
cF = W(pC (i))/

–
W , where 

–
W  is the average of the width pro-

file of the chromosome. This includes the significance of the 
candidate point minima with respect to the average width of 
the given chromosome.

9.  
9
cF = d(pmL(i), pC (i))/L. This gives the distance between the 

candidate point location and the regional maxima value prior 
to the candidate point, normalized by the total length of the 
chromosome.

10.  

 
10
cF  = d(pC (i), pmR(i))/L. This gives the distance between the 

candidate point location and the regional maxima value beyond 
the candidate point, normalized by the total length of the 
chromosome.

11.  

 
11
cF  is a Boolean feature used to indicate the staining process 

used during cell preparation. A value of ‘0’ would indicate the 
use of DAPI chromosome staining while ‘1’ would indicate a 
Giemsa-stained cell.

The detection of the centromere location assumes that each 
chromosome at least contains one centromere location within the 
chromosome. This is a reasonable assumption, since the centro-
mere region is an integral part of chromosome anatomy which is 
normally retained in cell division, with the exception of acentric 
fragments produced by excessive radiation exposure, or rarely in 
congenital and neoplastic conditions. This assumption transforms 
the detection problem into a ranking problem in which we pick the 
best candidate from a pool of candidates. Therefore, this enables 
the same approach to be adopted that was utilized for the contour 
partitioning algorithm (section); i.e. in which the distance from 
the separating hyperplane (ρ) represents a measure of goodness- 
of-fit for a given candidate. This metric reduces the multidimen-
sional feature space to a single dimension, which inherently reduces 
the complexity of the ranking procedure for the candidate loca-
tions. Since the large margin binary classifier (SVM) orients the 
separating hyperplane in the feature space, the 1D distance metric 
directly relates to how well a given candidate fits into the general 
characteristics of a given class label. A detailed introduction to the 
candidate-based centromere confidence metric is provided in the 
following section.

Candidate-based centromere confidence (CBCC)
Although existing measures of accuracy can establish perform-
ance of machine learning applications, these measures do not pro-
vide information on the reliability of the method. We developed 
a confidence metric for accurate detection of centromeres, which 
will be essential for assessment and ultimately adoption of this 
approach for diagnosis. We developed a Candidate Based Centro-
mere Confidence metric (CBCC) to assess detection of a centro-
mere location relative to alternatives. This value is obtained using 
the feature space derived via the classifier and the distance metric 
ρ. For a given set of candidate points, i.e. centromeres, of a chro-
mosome pC, the goodness-of-fit (GF) of the optimal candidate point 
( ρ̀ ) is obtained by calculating −(ρ− ρ )`

2 , which is the average distance 
of all the remaining candidate points. In the ideal situation, the opti-
mal candidate and the other candidates as support vectors for the 
classifier reside on opposite faces of the separating hyperplane (see 
Figure 5). Therefore the optimal candidate distance ( ρ̀ ) is ≈ 1, 
while the average of the remaining candidate distances (

_
ρ ) is ≈ –1. 

The GF value is truncated at unity, since exceeding this value does 
not add additional information to the metric.
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Figure 5. Shows the expected scenario for candidate-based centromere detection, in which six candidates are assessed by the SVM. 
The blue square represents the optimal candidate while the other five candidates are given by the red squares in the feature space.

Results
The complete data set used for developing and testing the algo-
rithm discussed in this paper consists of 40 metaphase cell 
images, of which 38 consisted from irradiated samples obtained 
from cytogenetic biodosimetry laboratories and two were non- 
irradiated cells from a clinical cytogenetic laboratory. The chromo-
some data set comprised images of 18 Giemsa-stained cells and 
22 DAPI-stained cells. The cells with minimal touching and over-
lapping chromosomes (a good metaphase spread) were manually 
selected from a pool of 1068 cell images for this experiment. Then 
40 cell images were selected to represent both DAPI (55%) and 
Giemsa (45%) staining methods. During ground truth evaluation, 
the expert was presented with the set of centromere candidates 
generated by the algorithm and was asked to select the candidate 
that closely represented the correct chromosomal location, while 
explicitly marking other candidates as non-centromeres. In cases 
where all the candidates suggested by the algorithm were incor-
rect, all the positions were designated as negative candidates.
Intra-observer variability between experts (ground truth) was min-
imal, as the laboratory directors differed in assessment in a sin-
gle centromere out of > 500 chromosomes analyzed by both. The 
1400 chromosome data set yielded 7058 centromere candidates. 
A randomly selected portion comprising 50% of this data set along 
with the corresponding ground truth centromere assignments were 
used for training a support vector machine for centromere localiza-
tion. Next, the accuracy of centromere localization was calculated 
and is provided in Table 1. This provides a breakdown of the detec-
tion accuracy of the algorithm based on the presence or the absence 
of sister chromatid separation in the cell images for each staining 
method. 

Table 2 depicts CBCC values for accurately detected chromosomes 
as opposed to inaccurately detected chromosomes. It also includes 

Table 1. The detection accuracy values for chromosomes 
used for the larger data set based on the staining 
method and the sister chromatid separation (sc. sep.).

Chromosome 
morphology

Number of 
chromosomes

Number of 
accurate 

detections

Detection 
accuracy

DAPI without 
sc. sep. 114 104 91.2%

DAPI with sc. 
sep. 587 517 88.1%

Giemsa with 
sc. sep. 699 599 85.6%

Table 2. Shows that CBCC metric demonstrates higher 
values in cases with accurate centromere detection.

Category Chromosomes Mean 
(μ)

Std. Dev 
(σ)

Accurate detection 1220 0.7861 0.3000

Inaccurate detection 180 0.3799 0.3293

Nonviable candidates 124 0.2696 0.2457

a third category termed “All nonviable candidate chromosomes” 
(a subset of the inaccurate centromere detection category), where 
none of the candidates for a given chromosome were marked as 
capturing the true centromere of the chromosome.
Figure 6 shows a representative sample of cases where the centro-
mere was accurately localized. These cases include chromosomes 
with and without sister chromatid separation. The method does not 
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chromosomes, in which the centromeric constriction is not readily 
apparent because of its close proximity to one of the telomeres.

The objective of this study was to accurately detect the preferred 
centromere location (points) for each chromosome, even though the 
SVM produces a set of candidate points that can each be classi-
fied separately. All candidates in each chromosome were analyzed 
separately and the best candidate from this set was selected based 
on the distance metric value (ρ) of which the results are produced in 
Table 1. Upon testing, the algorithm accurately located a correct 
centromere location in 1220 of 1400 chromosomes (87%). This is a 
clear improvement on our previous attempt with an accuracy of 81% 
(detected centromere within 5 pixels of the known location) which 
used a much smaller dataset of 226 chromosomes. It is notable that 
124 of the 180 chromosomes that were missed were instances of 
non-viable candidate chromosomes. Some of these were caused 
by segmentation of acrocentric chromosomes, where the lighter 
intensity of the short-arm satellite regions were segmented out, 
while others were primarily the result of an extreme degree of 
sister chromatid separation, such that the pairs of telomeres from 
sister chromatids could not be unequivocally paired. The values in 
Table 1 further suggest a slight reduction in accuracy for Giemsa-
stained images, which contained significantly higher levels of sister 
chromatid separation and noisy chromosome boundaries.

The proposed method performed centromere localization accu-
rately for chromosomes with high morphological variations (see 
Figure 6). From a machine learning point of view, Figure 6(a)–(c) 
are fairly straightforward centromere localizations. The CBCC 
values for all three cases were 1.000 which was truncated from 
an even higher value. This further validates the CBCC metric, 
indicating that the selected candidate is preferable over the other 
candidates in the same chromosome. It is important to notice that 
the boundary conditions at the telomeric region of Figure 6(c) is 
similar in appearance to those in Figure 3 or Figure 4. However, 
with further separation and intensity fading between the two  
sister chromatid arms, the segmentation algorithm could converge 
to a concave morphology in the telomere region that links the 
sister chromatids. Figure 6(e) represents such an instance where 
sister chromatid separation has had a significant effect on the 
chromosome segmentation. However, as a result of correcting for 
this effect, the algorithm has localized the centromere accurately 
with a CBCC value of 1.000. The chromosome segmentation in 
Figure 6(d) demonstrates evidence of extensive sister chromatid 
separation and therefore the CBCC value is at 0.995, which still 
is a high value for the data set. The Figure 6(f) represents a chro-
mosome which is highly bent and also presents with significant  
sister chromatid separation. Nevertheless, the algorithm was capa-
ble of localizing an accurate centromere location though the CBCC 
value was low (0.661), which indicates a less than ideal separation 
among the centromere candidates.

Some of the shortcomings of the proposed method are repre-
sented in Figure 7. Most of these (86%) were observed to be cases 
where none of the candidates were deemed to contain the actual 
centromere. This was mainly due to segmentation problems and 
add to high levels of sister chromatid separation. Figure 7(b) 
depicts an example where the segmentation algorithm failed 
to capture the constriction in an acrocentric chromosome. The 

Figure 6. Demonstrates sample results of the algorithm where the 
accurately detected centromere location (selected candidate) is 
depicted by a yellow dot while the segmented outline is drawn in 
blue. Figure 6(a) is a result from DAPI stained chromosomes while 
Figure 6(b)–(f) are results from Giemsa stained chromosomes. 
These results reported CBCC measures of (a) 1.000, (b) 1.000, (c) 
1.000, (d) 0.995, (e) 1.000, (f) 0.661, respectively.

detect centromere locations in all cases, some of which are impacted 
by the algorithm’s inability to fully correct for the adverse effects of 
sister chromatid separation (depicted in Figure 7).

Discussion
The candidate based approach for centromere detection used a 
trained SVM classifier based on half of the input chromosomes. 
The accuracy of the method was then tested using the remaining 
50% of the data set (2 fold cross validation); accuracy, sensitivity 
and specificity were 92%, 96% and 72%, respectively. Two fold 
cross validation was used instead of other methods such as the 
leave-one-out method, since it yields a reasonable estimation of the 
accuracy with a low computational cost. The higher sensitivity of 
this algorithm relative to our previous efforts5 can be attributed to 
improvements in the performance of the classifier on both typical 
and sister chromatid separated chromosomes. The lower specificity 
is predominantly related to lower confidence detection by the inte-
grated intensity Laplacian algorithm of centromeres in acrocentric 

Figure 7. Demonstrates results where the algorithm failed to 
yield an accurate centromere location. The detected centromere 
location (selected candidate) is depicted by a yellow dot while the 
segmented outline is drawn in blue. These results reported CBCC 
measures of (a) 0.368, (b) 0.066, (c) 0.655, respectively.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)
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CBCC value in this example was as low as 0.066, which indicates 
that the algorithm selected a weak candidate for the centromere. 
Figure 7(a) demonstrates a case where extreme sister chromatid 
separation has caused the segmentation algorithm to treat each 
individual chromatid separately. This chromosome had a low 
CBCC value of 0.368, which is consistent with the acentric nature 
(morphological) of the fragment. Figure 7(c) shows another 
impact of extreme sister chromatid separation on an acrocentric  
chromosome, namely, the incorrect connection of the long arm of a 
pair of sister chromatids, leading to an apparent, bent chromosome, 
instead of detecting sister chromatid separation. The CBCC meas-
ure fails to distinguish this chromosome from a normal bent chro-
mosome, but nevertheless yielded a relatively high value of 0.655. 

Although not the focus of this study, we carried out a preliminary 
analysis of the capability of this algorithm to detect both cen-
tromeres in a set of dicentric chromosomes, which were present 
among an excess of normal single centromere chromomes, due 
to irradiation of some of the cytogenetic samples analyzed. The  
constriction at the second centromere is similar morphologically to 
the first centromere in these chromosomes, and therefore, it should 
be feasible that it be among the candidates found by the algo-
rithm. We hypothesized that along with the optimal candidate, the  
second centromere was also expected to exhibit a short distance to the 
hyperplane and be well separated from the other candidates. These 
distances were compared for all centromere candidates, and prob-
able dicentric chromosomes were identified by determining if the  
correct, ground truth centromeres were among the top four ranked 
candidates. The breakdown of the candidates which captured the 
second centromere location is given in Table 3, where 20 cases  
(out of 31) reported the second centromere location as the sec-
ond highest ranked candidate location. Among the 31 dicen-
tric chromosomes present in the data set, the first candidate (the  
selected centromere) was accurate in all instances. There were only 
two instances where the second centromere was not among the top 

four candidates. In both of these cases, the chromosomes exhib-
ited a high degree of sister chromatid separation. Nevertheless, the  
proposed method provides a good framework for detecting  
dicentric chromosomes in radiation biodosimetry applications.

Conclusions
We have described a novel candidate-based centromere detection 
algorithm for analysis of metaphase cells prepared by different 
culturing and staining methods. The method performed with an 
87% accuracy level when tested with a data set of 1400 chromo-
somes from a composite set of metaphase images. The algorithm 
was capable of correcting for the artifact created by premature 
sister chromatid separation. The majority of chromosomes with 
centromere constrictions were detected with very high sensitivity. 
We have also tested a promising extension of the centromere detec-
tion algorithm to accurately identify dicentric chromosomes for 
cytogenetic biodosimetry. Loss of specificity in both monocentric 
and dicentric chromosomes was the result of segmentation errors in 
acrocentric chromosomes, as well as in chromosomes with extreme 
degrees of sister chromatid separation. 

The framework used for adding intensity into the Laplacian thick-
ness measurement algorithm can be easily extended to include 
other features besides the calculation of chromosome width. Fur-
ther investigation aimed at both improving centromere detection 
accuracy and applications of this algorithm to other detection prob-
lems is warranted. The Candidate Based Centromere Confidence 
(CBCC) was introduced as a measure for confidence in each centro-
mere detection. However, this metric can be applied to any problem 
which requires a selection of a candidate from a pool of candidates. 
We suggest that the CBCC metric may be extensible to indicate the 
relative quality of a given cell image or of a set of meta-phase cells 
from the same patient. If successful, the CBCC metric may eventu-
ally limit the amount of time required to evaluate samples both prior 
to and during centromere detection.
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Table 3. Shows that the proposed 
method ranked the second 
centromere in dicentric 
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Rank of the 
second centromere

Number of 
cases

02 20

03 6

04 3

05 1

06 1
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"The reliable detection of the centromere by image analysis techniques is challenging due to the
high morphological variations of chromosomes on microscope slides. This variation is caused by
various cell preparation and staining methods along with other factors that occur during mitosis.
Irregular boundaries and large variations in chromosome morphology can cause a detection
algorithm to miss the constriction, especially in high resolution chromosomes."
 
Missing information, like in the line just above methods

"The following section describes the proposed algorithm in detail. In section we show how this
algorithm performed with a large data set and in section we comment on the performance and how
it compares with other methods."
 
The authors have tested their method on DAPI & Q Banded metaspread images. But they have not
taken the data from the standard dataset. I recommend them to test their method on standard
dataset of ADIR dataset, Q Baded prometaphase dataset and G banded dataset. For which the
benchmarked datasets are available online. Then compare their results on different datasets. As
they have highlighted that straining methods can cause morphological variations.
 
The features have been selected for the purpose of classification. I would recommend that
selected features should be analyzed using correlation based feature selection, to remove the
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The result section can be further improved by explaining the reasons for obtaining such results.
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The authors present a method to detect centromeres position in fluorescence images. The proposed
method is an extension of their previous work where they segmented the chromosomes and detected the
telomeres position. Based on the detected contour of the chromosome they extract salient points, and
using am learning approach, try to infer the best position for the centromeres.

The methodology is described in details, but it is a bit difficult to follow the different steps, since there is no
figures to illustrate the process. The simplified model of figure 1 should be extended with anchor points,
telomeres, centromeres, so the different terms are clear for the reader.

One main point, however, is the usefulness of using machine learning, since the authors have first a set of
6 points, with 11 features each, and they want to determine the combination of the 6 points  that describe
best the chromosome. Since there are only 12 possible combinations, why not simply test them all and
minimize some cost function ? The number of features used is also reduced, did the authors check the
importance of each feature, using classical approaches like PCA ?

For the results, the authors should compare their new algorithm with other algorithms, or at least their own
algorithm from previous work, to better emphasize the interest of this new method.
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