

Abstract—Cytogenetic biodosimetry is the definitive test for
assessing exposure to ionizing radiation. It involves manual
assessment of the frequency of dicentric chromosomes (DCs)
on a microscope slide, which potentially contains hundreds of
metaphase cells. We developed an algorithm that can
automatically and accurately locate centromeres in DAPI-
stained metaphase chromosomes and that will detect DCs. In
this algorithm, a set of 200-250 metaphase cell images are
ranked and sorted. The 50 top-ranked images are used in the
triage DC assay (DCA). To meet the requirement of DCA in a
mass casualty event, we are accelerating our algorithm through
parallelization. In this paper, we present our finding in
accelerating our ranking and segmentation algorithms. Using
data parallelization on a desktop system, the ranking module
was up to 4-fold faster than the serial version and the Gradient
Vector Flow module (GVF) used in our segmentation
algorithm was up to 8-fold faster. Large scale data
parallelization of the ranking module processed 18,694 samples
in 11.40 hr. Task parallelization of Image ranking with
parallelized labeling on a desktop computer reduced
processing time by 20% of a serial process, and GVF module
recoded with parallelized matrix inversion reduced time by
70%. Overall, we estimate that the automated DCA will
require around 1 min per sample on a 64-core computing
system. Our long-term goal is to implement these algorithms on
a high performance computer cluster to assess radiation
exposures for thousands of individuals in a few hours.

I. INTRODUCTION
YTOGENETIC biodosimetry, which is recommended by
the WHO for assessing radiation exposures [1],

determines the frequency of dicentric chromosomes (DCs)
on a microscope slide of fixed metaphase cells and
compares this result to a dose-response calibration curve. In
a radiation-associated mass casualty event, hundreds of
thousands of patient samples (each consisting of 200-300
images) must be processed rapidly to identify and treat those
with clinically significant exposures [2]. Microscope images
of metaphase chromosomes are variable in morphology,
requiring dedicated image segmentation methods. We have
previously developed an algorithm that can automatically
and accurately locate centromeres in chromosomes and
detect DCs in samples prepared by either clinical
cytogenetic or biodosimetry reference labs [3]. Fig. 1
indicates the flow chart of our algorithm. We stain

chromosomes with 4'-6-diamidino-2-phenylindole (DAPI)
before image capture. The system consists of 8 modules that
are functionally classified as Image Ranking, Image
Segmentation via Gradient Vector Flow (GVF) and
Centerline-based Centromere Detection. Image Ranking
classifies and sorts images to eliminate cell images with
overlapping chromosomes or incomplete chromosome set
[4]. Individual chromosomes in a selected image are
separated by image segmentation via GVF [5], [6].
Centerlines are extracted through a skeleton pruning method
based on Discrete Curve Evolution (DCE) [7], [8]. This
improves on previous methods using Medial Axis
Transform and morphological thinning, which both suffer
from spurious branching and lead to incorrect centromere
placement. The resulting centerline is more accurate than
previous approaches, especially for bent chromosomes.
Traditionally, the centromere location has been determined
by the most prominent chromosome constriction along the
centerline. For greater accuracy, both chromosome width
and fluorescence intensity of the DAPI-stain are used to
locate the centromere for every cross section of a
chromosome. The first centromere is located at the cross
section with the minimum width and intensity. The
reliability of detected centromere location is measured by
‘centromere confidence value’ (CCF) [9]. Preparative
methods used by biodosimetry reference labs can result in
short chromosomes with separated sister chromatids,
affecting accurate centromere detection. The prototype
software implements algorithms to detect separated
chromatids and a fuzzy learning, rule-based method to refine
mis-located centromeres. By masking the first centromere,
the second centromere is located in the same way. Results
are independent of the length, shape and structure of
chromosomes in different cells which laboratory protocol is
followed, or the patient source.
 In a mass casualty event, thousands of DCA tests will
need to be accurately interpreted within a few days to assure
that those individuals exposed to significant levels of
ionizing radiation are prioritized for treatment. This level of
throughput is not possible by current manual scoring of
DCA with Giemsa-stained chromosomes. Our current

TOWARDS LARGE SCALE AUTOMATED
INTERPRETATION OF CYTOGENETIC

BIODOSIMETRY DATA
Yanxin Li1, Asanka Wickramasinghe1, Akila Subasinghe A.1, Jagath Samarabandu1, Joan Knoll1,2, Ruth

Wilkins3, Farrah Flegal4, and Peter Rogan1,2
 1Western University, 2Cytognomix Inc., 3Health Canada, 4Atomic Energy of Canada Ltd., Ontario, Canada

C

ICIAfS'12 1569626685

978-1-4673-1975-1/12/$31.00 ©2012 IEEE
ICIAfS’12

efforts to accelerate these procedures are focused on
recoding MATLAB-based scripts used to develop DCA
image processing algorithms as C++/OpenCV based
software and accelerating this software via parallelization
with the Message Passing Interface (MPI) and Intel
Threading Building Blocks (TBB).

II. METHOD
 We implemented and evaluated the performance of data
and task parallelization of the completed ranking and GVF
C++ modules. Data parallelization distributes each image /
chromosomes to different compute nodes. It provides high
parallelism and low overhead and is suitable for our project
because of the large quantity of distributable data that must
be processed. By contrast, task parallelization modifies key
low-level steps in the serial data analysis with parallel
approaches. The performance depends on whether and how
these steps can be parallelized, CPU availability and
overhead costs. It is effective when there is excess
computing capacity remaining after data parallelization.

A. Data Parallelization
Based on the large number of discrete images in the

dataset, we anticipated that parallel processing would be
likely to significantly positively impact performance. Data
parallelization is implemented based on Message Passing
Interface (MPI) or Intel Threading Building Blocks (TBB).
These platforms works well with computing cluster systems
and shared memory systems, and fewer modifications are
required to convert serial codes to a parallel version
compared with other platforms. Each computing node will
be assigned with a subset of images and chromosomes to
process, respectively in image ranking and GVF modules.

B. Task Parallelization
Since task parallelization usually produces higher

overhead, only computationally expensive steps are
parallelized. Binary image labeling, which requires 47% of
processing time in the ranking procedure, and circulant tri-
diagonal matrix inversion which is iterated several times in
GVF to derive the contour of a chromosome, have been

parallelized here.
Binary image labeling is based on the union-find method

(which represents components with trees; union trees are
used to merge components; and labeling finds the
corresponding tree) [10]. Two passes are used to label each
image with a set of trees, representing all components in the
image (i.e. Chromosomes). During the first pass, coarse
labeling, building and union of component trees occurs. In
the second pass, labeling is refined by searching and
locating the component trees. Parallel labeling divides an
image into sub-images, labels each sub-image, and
combines results from all sub-images. Considering an
image with n pixels, the time required for a serial process
to label components is:

t = n+ c2 fn+ c1 . (1)

c1 is the number of trees building and union operations
which depend on the number and shapes of components in
the image. c2 is the average number of tree levels. In

metaphase images, both c1 and c2 are constants whose
values can be empirically defined in integral intervals.
f represents the proportion of foreground pixels in all in the

images. If an image is divided to k sub-images and
processed in a p processors computer with parallel labeling,
the theoretically processing time is

t = k / p⎡⎢ ⎤⎥(n / k + c2 ' fn / k + r + c1 ')+ log2 k . (2)

c1 ' is the number of tree building and union operations,
which themselves depend on the number and shapes of
components in the sub-images. c2 ' is the average number of
tree levels in all sub-images. r is the number of columns of
the image. Division of an image into k sub-images requires
a time complexity of log2 k . The time to labeling each sub-
image is n / k + c2 ' fn / k + c1 ' , In merging labeled
adjacent sub-images, the first row and last row of each sub-
images are scanned, which costs r .

To solve an energy function in GVF requires inversion of
circulant tri-diagonal-like matrices. Matrix inversion is a NC
complex class problem, implying that it should be feasible
to effective improve algorithm performance by
parallelization. The most general method to invert a matrix
is Gaussian Elimination [11], which has a time complexity

of O(n3) to invert a n-by-n matrix. For circulant matrices a
widely-used method is using Fourier Transform. If Fast
Fourier Transform (FFT) like the library FFTW used [12],
the work (time required by parallel program to run using a

Fig. 1. Flow chart of DCA algorithm

single CPU) of inversion is O(n logn) and the span (time
required by parallel program run with infinite CPUs) of
inversion is O(logn) . For a circulant matrix, inversion is
equivalent to solving a system of linear equations
represented by this matrix. We parallelized the Thomas
Algorithm [13], which has an equivalent or better
performance than FFTW. Assuming p processors available,
the time is

t = n / (2i p)⎡⎢ ⎤⎥i=1

log2 n⎡⎢ ⎤⎥∑ . (3)

The work of parallelizing the Thomas Algorithm is O(n)

and the span is O(logn) .

III. EXPERIMENTS

Both data parallelization and task parallelization of
ranking module and GVF module on small datasets were
tested on an 8-core i7 desktop. In ranking module, 200
metaphase cell images, the least number of images required
for a valid sample, were ranked and in GVF module, 46
chromosomes, number of chromosomes in a human cell,
were processed to extract their contours. In these tests on a
desktop, data parallelization was implemented with MPI and
task parallelization was implemented with TBB. Large scale
data parallelized ranking was also tested. With a 64-core
shared memory computer (Symmetric Computing), 18,694
samples, each of which consists of 250 to 300 images, were
ranked by data parallelized ranking module implemented
with TBB. Besides module testing, the parameters and
performance of these two parallelized functions were
subsequently tested by task parallelization (described
below).

IV. RESULTS AND DISCUSSION

A. Data Parallelization
In data parallelization on a multiprocessor desktop PC,

processing time of ranking and GVF module was recorded.
Parallel ranking was 4-fold faster than serial version and
parallel GVF was almost 8-fold faster than serial GVF, as
shown in Table I. In the large scale test of parallel ranking
module implemented with TBB, 18,694 samples were
processed in 11.4 hours which was around 6 percent of time
needed by serial ranking on the same computer (see Fig. 2).
The fraction of non-parallelizable code by data
parallelization is usually very small. Hence according to
Amdahl’s law [14], the theoretical speedup from data
parallelization could increase approximately linearly with
the increasing of number of processors used. This was found
to be the case for the test of parallel GVF module, but not
for the test of parallel ranking module. This may due to
overhead of task management from MPI. We also find that

in the large scale data parallelization that involved > 30
processors, there was no obvious gain in speed regardless of
the amount of memory used. We attribute this to overhead
cost, however analysis of performance may be consistent
with suboptimal process partitioning by TBB.

B. Task Parallelization

Fig. 3. Comparison of serial and parallel labeling for different
numbers of sub-images. Para 4 signifies division into 4 sub-images.
32 sub-images provide the best performance, which was used in
following test.

Fig. 2. Large scale test of Data Parallelization on Ranking module
implemented with TBB. System tested consisted of 64-AMD
processors, with 1.5 Tb shared memory. Average time for one sample
(250-300 images) was recorded in 100 samples.

TABLE I
Performance of Data Parallelization on Ranking and GVF modules

using a 8-core desktop system
Module tested with MPI Ranking

(seconds)
GVF (seconds)

Serial code (2,4,6,8
processors)

10.761 13.444

Parallel code with 2
processors

5.008 6.432

Parallel code with 4
processors

2.526 3.155

Parallel code with 8
processors

2.216 1.755

In task parallelization, different numbers of sub-images in
parallel binary image labeling were tested. Dividing an
image to 32 sub-images brought the best performance, 2 to 3
times faster than the serial labeling (Fig. 3). Ranking module
with this parallelized labeling saved 20% time compared
with ranking module with serial labeling (Fig. 4).

In GVF module, matrices to be inverted usually are of
size 150 to 300. We tested the performance of general
Gaussian Elimination provided by OpenCV and parallelized
Thomas algorithm on matrices whose sizes ranging from
100 to 600, as in Table II. The computing time of Gaussian
Elimination grows quickly with the increasing of matrix
size, while the time growing of parallelized Thomas
algorithm is well controlled. GVF module with parallelized
matrix inversion saved around 70% time compared with the
GVF module with general Gaussian Elimination matrix
inversion (Fig. 5).

C. Overall Performance with Parallelization
We attempt to estimate the time to required analyze a

single metaphase cell from the sum of each of the steps
required to detect DCs, excluding overhead from
communication between these processes. As recoding and
parallelization of all steps have not been completed, the
expected performance improvements due to implementation

Fig. 4. Comparison of ranking speed using serial vs. parallel labeling.

TABLE II
Matrix inversion times using TBB on a desktop computer with 8 logic

cores
Matrix size:

N
Average Time (millisec)

for serial inversion
provided by OpenCV

Average time
(millisec) for

parallelized inversion
100-200 5.8399 0.2134
201-300 27.0717 0.44
301-400 75.311 0.7223
401-500 271.7779 1.1422
501-600 818.2553 1.7553

Fig. 5. GVF performance comparison of serial and parallelized
matrix inversion on a single image

TABLE IV
Expected performance and comparison of different DCA system

versions
Stages of
chromosome
image
processing

Time to
process
one
sample
(sec;
Matlab)

Time to process
one sample
(sec; C++/
OpenCV)
Above sub-cells:
serial; Below
sub-cells: 64-
core parallel

Performance
(accuracy
compared to
expert
cytogeneticist)
Reference [3],
[9]

Image ranking 266 10.7 ~98%
0.65

Chromosome
separation a

722 36 * >90%
2.4 **

GVF
segmentation

2290 670
43.6 **

Centerline
Extraction

1195 48 *
3.12 **

Centromere
detection

55 3 * 96.6%
normal; 85%
DC

0.195 **

Sister
chromatid
separation

322 16.1 * 93.1%
1.05 **

Centromere
Refinement

3240 162 * 100%
10.5 **

Expected Time
for entire
system of one
sample

166
min

18 min * 98% DCA;
88% overall 1.02 min **

 * Estimated time, based the observation that serial C++ ranking
module is 20 fold faster than Matlab ranking module. ** Estimated
time based on the observation that 64-core parallel C++ ranking
module is 15 fold faster than serial C++ ranking module.
 a Assumes ≤ 10 touching or overlapping chromosomes present in
an image.

TABLE III
Observed performance and comparison of different versions of

Ranking and GVF modules
Stages of chromosome
image processing

Image
ranking

GVF
segmentation

Maximum
speedup

Time to process one
sample (sec; Matlab)

266 2290

Time to process one
sample (sec;
C++/OpenCV, Serial)

10.7 670 20-fold
compared
with
Matlab

Time to process one
sample (sec;
C++/OpenCV; 8-core
Parallel)

2.22 88 5-fold
compared
with serial
C++

Time to process one
sample (sec;
C++/OpenCV; 64-core
Parallel)

0.65 15-fold
compared
with serial
C++

of C++ serial and parallel versions of completed MATLAB
modules were estimated from the performance of completed
versions of the metaphase ranking software module. Table
III indicates measured and estimated elapsed times for each
module, based on the data collected from parallelization
testing and estimation of performance for modules under
development. GVF segmentation is the most compute
intensive process, however inversion of circulant tri-
diagonal-like matrices has not yet been incorporated into
this code (which, according to Table II, should result in a
25-50 fold improvement in speed). We assume 200 cells
will be ranked for each sample and the complete DCA will
involve triage assessment of the top ranked 50 cells. With a
desktop PC running the serial version, it should be feasible
to analyze one sample in 18 min, which is faster than the
time required for manual scoring. With parallelization, this
performance should be significantly improved. The Ranking
module is ~20 fold faster with serial C++ code than the
Matlab routines. Assuming a similar performance
improvement is achieved for the serialized C++ modules
under development and given that parallelization of the
Ranking C++ code with 64 cores accelerates processing by
an additional 15 fold, we estimate that C++ parallelization
of these modules will give similar levels of speedup. We
attempted to benchmark the entire process based on the
gains obtained by implementation of the parallelized ranking
procedure. Table III shows details of the speedup from
Matlab to serial C++ and from serial C++ to parallelized
C++. In Table IV, we apply these scaling factors to the other
Matlab codes. With this caveat, approximately 1 min should
be required to analyze each sample using data parallelization
on 64 cores. In our testing, we determined however that disk
I/O can bottleneck processing of large numbers of samples,
and strategies will need to be developed to minimize these
effects. Nevertheless, numerous samples can be analyzed
simultaneously by exploiting multi-scale cluster computing
architectures and data parallelization. Theoretically if 128
cores are used for data parallelization, the processing time
should be half that of a similar 64-core system, from which
we infer that a 128 core system can process a sample in 31
seconds. It should be feasible to analyze 1000 samples in 8.5
hours with a 128 CPU cluster computer.

V. CONCLUSION
In endeavoring to accelerate this system, we developed

and tested two software parallelization schemas. Data and
task parallelization in a desktop computing environment
reduce CPU requirements up to 86% and 70% respectively,
relative to the serial versions of this software. Large scale
data parallelization required only 6% of the time used by the
corresponding serial process. These results demonstrate that
parallelization can efficiently accelerate interpretation of the
dicentric chromosomes analysis and suggest that
parallelization of the remaining modules of our system

should be worthwhile. Once completed, it should be feasible
to combine data and task parallelization approaches to
evaluate larger scale hardware configurations. It is
encouraging that such a strategy may be able to achieve the
image processing throughout demanded by the short
diagnostic and treatment windows to analyze a large number
of individuals exposed to a varying levels of ionizing
radiation.

ACKNOWLEDGMENT
Supported by the Western Innovation Fund (University of

Western Ontario), Natural Sciences and Engineering
Research Council of Canada and the DART-DOSE CMCR
(5U01AI091173-02 from the US Public Health Service).
We thank Symmetric Computing (Boston MA) for access to
their computing facility. PKR also acknowledges support
from Canadian Foundation for Innovation and Canada
Research Chairs Secretariat.

REFERENCES
[1] W. F. Blakely, Health Physics, 89 (5), 2005, pp. 494-504.
[2] R. C. Wilkins, H. Romm, T. C. Kao, A. A. Awa, M. A. Yoshida, G.

K. Livingston et al., Radiat Res. 2008 May;169(5): pp. 551-60.
[3] A. S. Arachchige, J. Samarabandu, J. Knoll, W. Khan, P. K. Rogan,

“An image processing algorithm for accurate extraction of the
centerline from human metaphase chromosomes,” Proc. IEEE ICIP
2010, pp. 3613-3616.

[4] P. Yanala, Lu T, El-Ghussein F, Zhao C, Medhi D, Wang Y-P, Knopp
J, Knoll JH, Rogan PK. “Automated Detection of Metaphase
Chromosomes for FISH and Routine Cytogenetics,” 54th Annual
ASHG Meeting, Toronto ON, 2004, p. 195; T. Kobayashi, Shyu C-R,
He L., Rogan PK, and Knoll J., “Content and classification based
ranking algorithm for metaphase chromosome images," IEEE
Conference on Multimedia Imaging, Taipei, 2004.

[5] C. Xu and J. L. Prince, “Gradient vector flow: A new external force
for snakes,” Proc. IEEE Comp Soc Conf on Computer Vision and
Pattern Recognition, 1997.

[6] C. Li, J. Liu, M. D. Fox, “Segmentation of edge preserving gradient
vector flow: An approach toward automatically initializing and
splitting of snakes,” Proc. IEEE Comp Soc Conf on Computer Vision
and Pattern Recognition, 2005 pp. 162-7.

[7] X. Bai, L. J. Latecki, W. Y. Liu, “Skeleton pruning by contour
partitioning with discrete curve evolution,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 29, no. 03, 2007.

[8] L. J. Latecki and R. Lakaamper, “Polygon evolution by vertex
deletion,” Proc. of Second International Conference on Scale-Space
Theories in Computer Vision. Springer-Verlag London, UK, 1999, pp.
398-409.

[9] A. S. Arachchige, J. Samarabandu, J. Knoll, W. Khan, P. K. Rogan,
“An Accurate Image Processing Algorithm for Detecting FISH Probe
Locations Relative to Chromosome Landmarks on DAPI Stained
Metaphase Chromosome Images,” Canadian Conf. on Computer
& Robot Vision, 2010, pp. 223 – 230, DOI: 10.1109/CRV.2010.36.

[10] L. Shapiro, G. Stockman, Computer Vision, 2002, pp. 69-73.
[11] R. L. Burden, J. D. Faires, Numerical Analysis 7th edition, pp. 370-

378.
[12] M. Frigo, S. G. Johnson, “The design and implementation of

FFTW3,” Proc. of the IEEE 93 (2): pp. 216-231.
[13] L. H. Thomas, Elliptic Problems in Linear Differential Equations

over a Network, 1949.

[14] G. Amdahl, “Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities, ” AFIPS Conference
Proceedings, vol. 30, 1967, pp. 483-485.

6

