
 

 
Abstract—Cytogenetic biodosimetry is the definitive test for 
assessing exposure to ionizing radiation. It involves manual 
assessment of the frequency of dicentric chromosomes (DCs) 
on a microscope slide, which potentially contains hundreds of 
metaphase cells. We developed an algorithm that can 
automatically and accurately locate centromeres in DAPI-
stained metaphase chromosomes and that will detect DCs. In 
this algorithm, a set of 200-250 metaphase cell images are 
ranked and sorted. The 50 top-ranked images are used in the 
triage DC assay (DCA). To meet the requirement of DCA in a 
mass casualty event, we are accelerating our algorithm through 
parallelization. In this paper, we present our finding in 
accelerating our ranking and segmentation algorithms. Using 
data parallelization on a desktop system, the ranking module 
was up to 4-fold faster than the serial version and the Gradient 
Vector Flow module (GVF) used in our segmentation 
algorithm was up to 8-fold faster. Large scale data 
parallelization of the ranking module processed 18,694 samples 
in 11.40 hr. Task parallelization of Image ranking with 
parallelized labeling on a desktop computer reduced 
processing time by 20% of a serial process, and GVF module 
recoded with parallelized matrix inversion reduced time by 
70%. Overall, we estimate that the automated DCA will 
require around 1 min per sample on a 64-core computing 
system. Our long-term goal is to implement these algorithms on 
a high performance computer cluster to assess radiation 
exposures for thousands of individuals in a few hours. 

I. INTRODUCTION 
YTOGENETIC biodosimetry, which is recommended by 
the WHO for assessing radiation exposures [1], 

determines the frequency of dicentric chromosomes (DCs) 
on a microscope slide of fixed metaphase cells and 
compares this result to a dose-response calibration curve. In 
a radiation-associated mass casualty event, hundreds of 
thousands of patient samples (each consisting of 200-300 
images) must be processed rapidly to identify and treat those 
with clinically significant exposures [2]. Microscope images 
of metaphase chromosomes are variable in morphology, 
requiring dedicated image segmentation methods. We have 
previously developed an algorithm that can automatically 
and accurately locate centromeres in chromosomes and 
detect DCs in samples prepared by either clinical 
cytogenetic or biodosimetry reference labs [3]. Fig. 1 
indicates the flow chart of our algorithm. We stain 

chromosomes with 4'-6-diamidino-2-phenylindole (DAPI) 
before image capture. The system consists of 8 modules that 
are functionally classified as Image Ranking, Image 
Segmentation via Gradient Vector Flow (GVF) and 
Centerline-based Centromere Detection. Image Ranking 
classifies and sorts images to eliminate cell images with 
overlapping chromosomes or incomplete chromosome set 
[4]. Individual chromosomes in a selected image are 
separated by image segmentation via GVF [5], [6]. 
Centerlines are extracted through a skeleton pruning method 
based on Discrete Curve Evolution (DCE) [7], [8]. This 
improves on previous methods using Medial Axis 
Transform and morphological thinning, which both suffer 
from spurious branching and lead to incorrect centromere 
placement. The resulting centerline is more accurate than 
previous approaches, especially for bent chromosomes. 
Traditionally, the centromere location has been determined 
by the most prominent chromosome constriction along the 
centerline. For greater accuracy, both chromosome width 
and fluorescence intensity of the DAPI-stain are used to 
locate the centromere for every cross section of a 
chromosome. The first centromere is located at the cross 
section with the minimum width and intensity. The 
reliability of detected centromere location is measured by 
‘centromere confidence value’ (CCF) [9]. Preparative 
methods used by biodosimetry reference labs can result in 
short chromosomes with separated sister chromatids, 
affecting accurate centromere detection. The prototype 
software implements algorithms to detect separated 
chromatids and a fuzzy learning, rule-based method to refine 
mis-located centromeres. By masking the first centromere, 
the second centromere is located in the same way.  Results 
are independent of the length, shape and structure of 
chromosomes in different cells which laboratory protocol is 
followed, or the patient source.  
 In a mass casualty event, thousands of DCA tests will 
need to be accurately interpreted within a few days to assure 
that those individuals exposed to significant levels of 
ionizing radiation are prioritized for treatment. This level of 
throughput is not possible by current manual scoring of 
DCA with Giemsa-stained chromosomes. Our current 
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efforts to accelerate these procedures are focused on 
recoding MATLAB-based scripts used to develop DCA 
image processing algorithms as C++/OpenCV based 
software and accelerating this software via parallelization 
with the Message Passing Interface (MPI) and Intel 
Threading Building Blocks (TBB). 

II. METHOD 
  We implemented and evaluated the performance of data 
and task parallelization of the completed ranking and GVF 
C++ modules. Data parallelization distributes each image / 
chromosomes to different compute nodes. It provides high 
parallelism and low overhead and is suitable for our project 
because of the large quantity of distributable data that must 
be processed. By contrast, task parallelization modifies key 
low-level steps in the serial data analysis with parallel 
approaches. The performance depends on whether and how 
these steps can be parallelized, CPU availability and 
overhead costs. It is effective when there is excess 
computing capacity remaining after data parallelization.  

A. Data Parallelization 
Based on the large number of discrete images in the 

dataset, we anticipated that parallel processing would be 
likely to significantly positively impact performance.   Data 
parallelization is implemented based on Message Passing 
Interface (MPI) or Intel Threading Building Blocks (TBB). 
These platforms works well with computing cluster systems 
and shared memory systems, and fewer modifications are 
required to convert serial codes to a parallel version 
compared with other platforms. Each computing node will 
be assigned with a subset of images and chromosomes to 
process, respectively in image ranking and GVF modules. 
 

B. Task Parallelization  
Since task parallelization usually produces higher 

overhead, only computationally expensive steps are 
parallelized. Binary image labeling, which requires 47% of 
processing time in the ranking procedure, and circulant tri-
diagonal matrix inversion which is iterated several times in 
GVF to derive the contour of a chromosome, have been 

parallelized here. 
Binary image labeling is based on the union-find method 

(which represents components with trees; union trees are 
used to merge components; and labeling finds the 
corresponding tree) [10]. Two passes are used to label each 
image with a set of trees, representing all components in the 
image (i.e. Chromosomes). During the first pass, coarse 
labeling, building and union of component trees occurs. In 
the second pass, labeling is refined by searching and 
locating the component trees. Parallel labeling divides an 
image into sub-images, labels each sub-image, and 
combines results from all sub-images.  Considering an 
image with n  pixels, the time required for a serial process 
to label components is:  
 
t = n+ c2 fn+ c1 . (1) 
 
c1  is the number of trees building and union operations 
which depend on the number and shapes of components in 
the image. c2  is the average number of tree levels. In 

metaphase images, both c1  and c2  are constants whose 
values can be empirically defined in integral intervals. 
f represents the proportion of foreground pixels in all in the 

images. If an image is divided to k sub-images and 
processed in a p processors computer with parallel labeling, 
the theoretically processing time is 
 
t = k / p⎡⎢ ⎤⎥(n / k + c2 ' fn / k + r + c1 ')+ log2 k . (2) 

 
c1 '  is the number of tree building and union operations, 
which themselves depend on the number and shapes of 
components in the sub-images. c2 ' is the average number of 
tree levels in all sub-images. r  is the number of columns of 
the image. Division of an image into k  sub-images requires 
a time complexity of log2 k . The time to labeling each sub-
image is  n / k + c2 ' fn / k + c1 ' ,  In merging labeled 
adjacent sub-images, the first row and last row of each sub-
images are scanned, which costs r . 

To solve an energy function in GVF requires inversion of 
circulant tri-diagonal-like matrices. Matrix inversion is a NC 
complex class problem, implying that it should be feasible 
to effective improve algorithm performance  by 
parallelization. The most general method to invert a matrix 
is Gaussian Elimination [11], which has a time complexity 

of O(n3)  to invert a n-by-n matrix. For circulant matrices a 
widely-used method is using Fourier Transform. If Fast 
Fourier Transform (FFT) like the library FFTW used [12], 
the work (time required by parallel program to run using a 

 
Fig. 1.  Flow chart of DCA algorithm 



 

single CPU) of inversion is O(n logn)  and the span (time 
required by parallel program run with infinite CPUs) of 
inversion is O(logn) . For a circulant matrix, inversion is 
equivalent to solving a system of linear equations 
represented by this matrix. We parallelized the Thomas 
Algorithm [13], which has an equivalent or better 
performance than FFTW. Assuming p processors available, 
the time is  

 

t = n / (2i p)⎡⎢ ⎤⎥i=1

log2 n⎡⎢ ⎤⎥∑ . (3) 

 
The work of parallelizing the Thomas Algorithm is O(n)  

and the span is O(logn) . 

III. EXPERIMENTS 

Both data parallelization and task parallelization of 
ranking module and GVF module on small datasets were 
tested on an 8-core i7 desktop. In ranking module, 200 
metaphase cell images, the least number of images required 
for a valid sample, were ranked and in GVF module, 46 
chromosomes, number of chromosomes in a human cell, 
were processed to extract their contours. In these tests on a 
desktop, data parallelization was implemented with MPI and 
task parallelization was implemented with TBB. Large scale 
data parallelized ranking was also tested. With a 64-core 
shared memory computer (Symmetric Computing), 18,694 
samples, each of which consists of 250 to 300 images, were 
ranked by data parallelized ranking module implemented 
with TBB. Besides module testing, the parameters and 
performance of these two parallelized functions were 
subsequently tested by task parallelization (described 
below). 

IV. RESULTS AND DISCUSSION 

A. Data Parallelization 
In data parallelization on a multiprocessor desktop PC, 

processing time of ranking and GVF module was recorded. 
Parallel ranking was 4-fold faster than serial version and 
parallel GVF was almost 8-fold faster than serial GVF, as 
shown in Table I. In the large scale test of parallel ranking 
module implemented with TBB, 18,694 samples were 
processed in 11.4 hours which was around 6 percent of time 
needed by serial ranking on the same computer (see Fig. 2). 
The fraction of non-parallelizable code by data 
parallelization is usually very small. Hence according to 
Amdahl’s law [14], the theoretical speedup from data 
parallelization could increase approximately linearly with 
the increasing of number of processors used. This was found 
to be the case for the test of parallel GVF module, but not 
for the test of parallel ranking module. This may due to 
overhead of task management from MPI. We also find that 

in the large scale data parallelization that involved > 30 
processors, there was no obvious gain in speed regardless of 
the amount of memory used. We attribute this to overhead 
cost, however analysis of performance may be consistent 
with suboptimal process partitioning by TBB. 

B. Task Parallelization 

 
Fig. 3.  Comparison of serial and parallel labeling for different 
numbers of sub-images. Para 4 signifies division into 4 sub-images. 
32 sub-images provide the best performance, which was used in 
following test. 

 
Fig. 2.  Large scale test of Data Parallelization on Ranking module 
implemented with TBB. System tested consisted of 64-AMD 
processors, with 1.5 Tb shared memory. Average time for one sample 
(250-300 images) was recorded in 100 samples.  

TABLE I 
Performance of Data Parallelization on Ranking and GVF modules 

using a 8-core desktop system 
Module tested with MPI Ranking 

(seconds) 
GVF (seconds) 

Serial code (2,4,6,8 
processors) 

10.761 13.444 

Parallel code with 2 
processors 

5.008 6.432 

Parallel code with 4 
processors 

2.526 3.155 

Parallel code with 8 
processors 

2.216 1.755 



 

In task parallelization, different numbers of sub-images in 
parallel binary image labeling were tested. Dividing an 
image to 32 sub-images brought the best performance, 2 to 3 
times faster than the serial labeling (Fig. 3). Ranking module 
with this parallelized labeling saved 20% time compared 
with ranking module with serial labeling (Fig. 4). 

In GVF module, matrices to be inverted usually are of 
size 150 to 300. We tested the performance of general 
Gaussian Elimination provided by OpenCV and parallelized 
Thomas algorithm on matrices whose sizes ranging from 
100 to 600, as in Table II. The computing time of Gaussian 
Elimination grows quickly with the increasing of matrix 
size, while the time growing of parallelized Thomas 
algorithm is well controlled. GVF module with parallelized 
matrix inversion saved around 70% time compared with the 
GVF module with general Gaussian Elimination matrix 
inversion (Fig. 5).  

C. Overall Performance with Parallelization 
We attempt to estimate the time to required analyze a 

single metaphase cell from the sum of each of the steps 
required to detect DCs, excluding overhead from 
communication between these processes. As recoding and 
parallelization of all steps have not been completed, the 
expected performance improvements due to implementation 

 
Fig. 4.  Comparison of ranking speed using serial vs. parallel labeling. 

TABLE II 
Matrix inversion times using TBB on a desktop computer with 8 logic 

cores 
Matrix size: 

N 
Average Time (millisec) 

for serial inversion 
provided by OpenCV 

Average time 
(millisec) for 

parallelized inversion 
100-200 5.8399 0.2134 
201-300 27.0717 0.44 
301-400 75.311 0.7223 
401-500 271.7779 1.1422 
501-600 818.2553 1.7553 

 

 
Fig. 5.  GVF performance comparison of serial and parallelized 
matrix inversion on a single image 

TABLE IV 
Expected performance and comparison of different DCA system 

versions 
Stages of 
chromosome 
image 
processing 

Time to 
process 
one 
sample 
(sec; 
Matlab) 

Time to process 
one sample  
(sec; C++/ 
OpenCV) 
Above sub-cells: 
serial; Below 
sub-cells: 64-
core parallel 

Performance 
(accuracy 
compared to 
expert 
cytogeneticist) 
Reference [3], 
[9] 

Image ranking  266 10.7 ~98% 
0.65 

Chromosome 
separation a 

722 36 * >90% 
2.4 ** 

GVF 
segmentation 

2290 670  
43.6 ** 

Centerline 
Extraction 

1195 48 *  
3.12 ** 

Centromere 
detection 

55 3 * 96.6% 
normal; 85% 
DC 

0.195 ** 

Sister 
chromatid 
separation 

322 16.1 * 93.1% 
1.05 ** 

Centromere 
Refinement 

3240 162 * 100% 
10.5 ** 

Expected Time 
for entire 
system of one 
sample 

166 
min 

18 min * 98% DCA; 
88% overall 1.02 min ** 

    * Estimated time, based the observation that serial C++ ranking 
module is 20 fold faster than Matlab ranking module. ** Estimated 
time based on the observation that 64-core parallel C++ ranking 
module is 15 fold faster than serial C++ ranking module. 
    a Assumes  ≤ 10 touching or overlapping chromosomes present in 
an image. 

TABLE III 
Observed performance and comparison of different versions of 

Ranking and GVF modules 
Stages of chromosome 
image processing 

Image 
ranking 

GVF 
segmentation 

Maximum 
speedup 

Time to process one 
sample (sec; Matlab) 

266 2290  

Time to process one 
sample (sec; 
C++/OpenCV, Serial) 

10.7 670 20-fold 
compared 
with 
Matlab 

Time to process one 
sample (sec; 
C++/OpenCV; 8-core 
Parallel) 

2.22 88 5-fold 
compared 
with serial 
C++ 

Time to process one 
sample (sec; 
C++/OpenCV; 64-core 
Parallel) 

0.65  15-fold 
compared 
with serial 
C++ 



 

of  C++ serial and parallel versions of completed MATLAB 
modules were estimated from the performance of completed 
versions of the metaphase ranking software module. Table 
III indicates measured and estimated elapsed times for each 
module, based on the data collected from parallelization 
testing and estimation of performance for modules under 
development. GVF segmentation is the most compute 
intensive process, however inversion of circulant tri-
diagonal-like matrices has not yet been incorporated into 
this code (which, according to Table II, should result in a 
25-50 fold improvement in speed).  We assume 200 cells 
will be ranked for each sample and the complete DCA will 
involve triage assessment of the top ranked 50 cells. With a 
desktop PC running the serial version, it should be feasible 
to analyze one sample in 18 min, which is faster than the 
time required for manual scoring. With parallelization, this 
performance should be significantly improved. The Ranking 
module is ~20 fold faster with serial C++ code than the 
Matlab routines. Assuming a similar performance 
improvement is achieved for the  serialized C++ modules  
under development and given that  parallelization of the 
Ranking C++ code with 64 cores accelerates processing by 
an additional 15 fold, we estimate that C++ parallelization 
of these modules will give similar levels of speedup. We 
attempted to benchmark the entire process based on the 
gains obtained by implementation of the parallelized ranking 
procedure. Table III shows details of the speedup from 
Matlab to serial C++ and from serial C++ to parallelized 
C++. In Table IV, we apply these scaling factors to the other 
Matlab codes. With this caveat, approximately 1 min should 
be required to analyze each sample using data parallelization 
on 64 cores. In our testing, we determined however that disk 
I/O can bottleneck processing of large numbers of samples, 
and strategies will need to be developed to minimize these 
effects. Nevertheless, numerous samples can be analyzed 
simultaneously by exploiting multi-scale cluster computing 
architectures and data parallelization. Theoretically if 128 
cores are used for data parallelization, the processing time 
should be half that of a similar 64-core system, from which 
we infer that a 128 core system can process a sample in 31 
seconds. It should be feasible to analyze 1000 samples in 8.5 
hours with a 128 CPU cluster computer.  

V. CONCLUSION 
In endeavoring to accelerate this system, we developed 

and tested two software parallelization schemas. Data and 
task parallelization in a desktop computing environment  
reduce CPU requirements up to 86% and 70% respectively, 
relative to the serial versions of this software. Large scale 
data parallelization required only 6% of the time used by the 
corresponding serial process. These results demonstrate that 
parallelization can efficiently accelerate interpretation of the 
dicentric chromosomes analysis and suggest that 
parallelization of the remaining modules of our system 

should be worthwhile. Once completed, it should be feasible 
to combine data and task parallelization approaches to 
evaluate larger scale hardware configurations. It is 
encouraging that such a strategy may be able to achieve the 
image processing throughout demanded by the short 
diagnostic and treatment windows to analyze a large number 
of individuals exposed to a varying levels of ionizing 
radiation. 
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